
Spinney
Release ’0.9.a2’

'Marco Arrigoni'

Oct 16, 2020

CONTENTS:

1 The Spinney package 1

2 Installation 3
2.1 Setup . 3
2.2 Requirements . 3

3 Case Study: Mg-doped GaN 5
3.1 Step 1. Defining the values of chemical potentials . 5
3.2 Step 2. Set up the directory with the data about the defective system 8
3.3 Step 3. Calculate defect formation energies . 9
3.4 Step 4. Calculate charge transition levels . 11
3.5 Step 4. Calculate defect concentrations . 12

4 Tutorial 15
4.1 The defect formation energy in the supercell approach . 15
4.2 Correction schemes for electrostatic finite-size effects . 25
4.3 Thermodynamic limits for the chemical potentials . 36
4.4 Charge Transition Levels . 44
4.5 Equilibrium defect concentrations in the dilute limit . 49

5 Release Notes 59
5.1 Version 0.9.a1 . 59
5.2 Version 0.9.a1 . 59
5.3 Version 0.9.a0 . 59
5.4 Version 0.8.a3 . 59
5.5 Version 0.8.a2 . 59
5.6 Version 0.8.a1 . 60
5.7 Version 0.8.a0 . 60
5.8 Version 0.7.a5 . 60

6 API reference 61
6.1 General high-level interface for point-defect calculations . 62
6.2 Determination of the possible values of equilibrium chemical potentials 67
6.3 Correction schemes for electrostatic finite-size effects in supercells 74
6.4 Calculation of equilibrium defect properties . 80
6.5 General-purpose tools . 88
6.6 Support for first-principles codes . 91

7 Bibliography 95

8 Contact 97

i

8.1 E-mail . 97
8.2 Gitlab . 97

Bibliography 99

Python Module Index 101

Index 103

ii

CHAPTER

ONE

THE SPINNEY PACKAGE

Spinney is a Python package dedicated to the study of point defects in solids. In particular, the code is designed to
assist with the post-processing of first-principles calculations.

The aim of the package is to perform the several steps required in order to obtain meaningful quantities and properties
concerning materials with point defects from the output files produced by first-principles codes.

These are some of the most relevant tasks that Spinney is able to perform:

• Compute, from external data (taken for example from online repositories), the ranges of validity for the elements
chemical potentials according to thermodynamic constraints;

• Calculate the correction energy due to electrostatic finite-size-effects in charged supercells using state-of-the-art
schemes;

• Calculate defect formation energies and transition levels;

• Calculate defects and carriers concentrations.

In developing Spinney, we aimed for a great code flexibility. For this reason, all the core routines take as argument
either built-in Python objects or data structures ubiquitous in scientific computing, such as NumPy arrays.

This makes possible the integration of Spinney with any first-principle code, as the core routines can be used to
write a proper interface for the relevant computer package.

For convenience, Spinney offers also a higher-level object for a direct calculation of the defect formation energy from
the result of first-principles calculations. Such property is arguably the most relevant descriptor characterizing a point
defect. For technologically-relevant materials, such as insulators and semiconductors, the presence of charged defects
is ubiquitous. The PointDefect class offers a handy way for calculating the defect formation energy, including
correction terms for dealing with electrostatic finite-size effects using state-of-the-art schemes. For convenience, such
class can be initialized by a ase.Atoms instance of the ASE library.

Reading and processing the output of first principles calculations describing several different point defects in the same
host material is straightforward through the DefectiveSystem class.

1

Spinney, Release ’0.9.a2’

2 Chapter 1. The Spinney package

CHAPTER

TWO

INSTALLATION

2.1 Setup

Spinney is available one the Python Package Index, the most simple way to install it is using pip:

pip install spinney

After the installation is completed, you can run some tests in order to see if the installation was successfull.

To do so, run the command:

spinney-run-tests

The Spinney package is also hosted on Gitlab.

In this case, to install the package, create a new directory and clone the repository. From the root directory, run the
command:

python3 setup.py install

And to check if the installation was successfull, type:

python3 setup.py test

Note: We recommend to install Spinney within a Python virtual environment, such as those created by Virtualenv.

2.2 Requirements

Spinney requires Python3 and the following libraries:

• NumPy version 1.12 or newer;

• SciPy version 1.4 or newer;

• Pandas version 0.25 or newer;

• Matplotlib version 3.1.0 or newer;

• ASE version 3.18 or newer.

3

https://pypi.org/
https://gitlab.com/Marrigoni/spinney
https://virtualenv.pypa.io
https://www.python.org
https://www.numpy.org
https://www.scipy.org
https://pandas.pydata.org/
https://matplotlib.org/
https://wiki.fysik.dtu.dk/ase/

Spinney, Release ’0.9.a2’

Warning: Spinney is not compatible with ASE versions older than the 3.18 one.

4 Chapter 2. Installation

CHAPTER

THREE

CASE STUDY: MG-DOPED GAN

This tutorial will show how to calculate the main quantities of interest for a defective system using Spinney. It is
meant to offer a quick overview of the capabilities of Spinney and how to use the code in practice. For a more
detailed guide, see the full Tutorial.

We will take as an example Mg-doped GaN. GaN is a material which is extensevely employed in several devices. It
shows an intrinsic 𝑛-type conductivity; on the other hand, the ability of synthesizing 𝑝-type GaN would be very bene-
ficial for many technological applications such as optoelectronic devices. Obtaining 𝑝-type carriers is very challenging
and Mg is arguably the only dopant that has been successfully employed in the synthesis of 𝑝-type GaN.

Contents

• Step 1. Defining the values of chemical potentials

• Step 2. Set up the directory with the data about the defective system

– Initialize an DefectiveSystem instance

• Step 3. Calculate defect formation energies

– 1. Calculate the value for the chemical potentials

– 2. Add information about the pristine and defective system

– 3. Calculate the defect formation energy

• Step 4. Calculate charge transition levels

• Step 4. Calculate defect concentrations

3.1 Step 1. Defining the values of chemical potentials

Important quantities that characterize a defective system, such as defect formation energies are affected by the chemical
potential values of the elements forming the defective system.

The thermodynamic stability of the host material imposes some constraints on the values these chemical potentials can
assume.(For more details see the dedicated session in the main tutorial).

For the case of Mg-doped GaN, let ∆𝜇𝑖 represents the value of the chemical potential of element from the element
chemical potential in its standard state (crystalline orthorhombic phase for Ga, N2 molecule for N and the crystalline

5

Spinney, Release ’0.9.a2’

HCP phase for Mg). The thermodynamic stability of GaN requires that the following constraints are satisfied:

∆𝜇Ga + ∆𝜇N = ∆ℎGaN

𝑥∆𝜇Ga + 𝑦∆𝜇N + 𝑧∆𝜇Mg ≤ ∆ℎGaxNyMgz

∆𝜇Ga ≤ 0

∆𝜇N ≤ 0

∆𝜇Mg ≤ 0

where ∆ℎ is the formation enthalpy per formula unit.

For calculating physically acceptable values for the chemical potentials, we can use the Range class.

It is useful to prepare a text file, for example called formation_energies.txt which for each compound in the Ga-N-
Mg system reports in the first column the compound formula unit and in the second column its formation energy per
formula unit. In our example we can use:

Formation energies per formula unit calculated with PBE for GaN
#Compound E_f (eV/fu)
MgGa2 -0.3533064287
Mg3N2 -3.8619941875
Mg2Ga5 -0.7160803263
Ga 0.0000000000
Mg 0.0000000000
GaN -0.9283419463
N 0.0000000000

Line starting with # are comments and will be skipped, more compounds can of course be consider, but we limit
ourselves to few of them for simplicity.

The following snippet of code shows the minimum and maximum value that ∆𝜇𝑖 can assume in order to satisfy the
constraints (3.1).

from spinney.thermodynamics.chempots import Range, get_chem_pots_conditions

data = 'formation_energies.txt'

equality_compounds = ['GaN'] # compound where the constraint is an equation
order = ['Ga', 'N', 'Mg'] # chemical potential 0 is for Ga, 1 for N etc
obtain data to feed to the Range class
parsed_data= get_chem_pots_conditions(data, order, equality_compounds)
prepare Range instances
crange = Range(*parsed_data[:-1])

for each chemical potential, stores the minimum and maximum possible values
ranges = crange.variables_extrema
print(ranges)

Output:

[[-9.28341946e-01 -2.21944834e-14]
[-9.28341946e-01 -3.94026337e-14]
[-inf -6.68436765e-01]]

In principle both ∆𝜇Ga and ∆𝜇N can range from ℎGaN to 0. Clearly the value of one chemical potential fixes the
other as given by equation (3.1).

Suppose we are interested in GaN growth in Ga-rich conditions. We want then set ∆𝜇Ga = 0. We need to find
acceptable values for ∆𝜇N and ∆𝜇Mg. The former is fixed once ∆𝜇Ga is fixed. For the latter, it is usually observed

6 Chapter 3. Case Study: Mg-doped GaN

Spinney, Release ’0.9.a2’

that high concentrations of Mg are needed to fabricate 𝑝-type GaN. We would then like to consider conditions in which
the chemical potential of Mg is as close as possible to the one of pure metal Mg.

We can investigate the acceptable values of ∆𝜇Mg by plotting the intersection of the feasible region with the plane
∆𝜇Ga = 0, and print the mimimum and maximum value the chemical potential can assume on this plane, as shows
this code snippet:

compound labels
crange.set_compound_dict(parsed_data[-1])
let's use some pretty labels in the plot
the order of the axes must follow the order used for get_chem_pots_conditions
labels = [r'$\Delta \mu_{Ga}$ (eV)', r'$\Delta \mu_{N}$ (eV)',

r'$\Delta \mu_{Mg}$ (eV)']
intersection plane is defined by axes 1 and 2 (chem pot of N and Mg)
crange.plot_feasible_region_on_plane([1,2], x_label=labels[1],

y_label=labels[2],
title='GaN Ga-rich',
save_plot=True)

chemical potential boundaries on such plane
print(crange.variables_extrema_2d)

Output:

2.0 1.5 1.0 0.5 0.0
N (eV)

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

M
g (

eV
)

Mg3N2
Mg2Ga5
N

GaN Ga-rich

3.1. Step 1. Defining the values of chemical potentials 7

Spinney, Release ’0.9.a2’

[[-0.92834195 -0.92834195]
[-inf -0.66843676]]

The shaded are in the plot show the feasible region corresponding to the inequality constraints of equation (3.1). From
the plot it is clear that ∆𝜇Mg can assume a maximum value of -0.668 eV. It is not possible to go to Mg-richer conditions
as Mg3N2 would start to precipitate.

In the study of defective Mg-doped GaN we will then consider the chemical potentials:

• ∆𝜇Ga = 0

• ∆𝜇N = ∆ℎGaN

• ∆𝜇Mg = −0.668

Corresponding to a system in equilibrium with pure Ga and Mg3N2.

3.2 Step 2. Set up the directory with the data about the defective
system

Once we have an idea about the thermodynamic stability of the system, we can run the calculations of the defective
system.

Most of the properties of interest of a defective system depend on the energy of the system with a point defect and
pristine system. It is convenient to save the results of our calculations using the directory hierarchy understood by
Spinney.

We will consider that all the calculations have been performed with the code VASP (for details when other codes are
used see Manage a defective system with the class DefectiveSystem). Calculations have been performed at the PBE
level using supercells with 96 atoms.

The directory tree might look like this:

data
data_defects

Ga_int
0

OUTCAR
position.txt

1
OUTCAR
position.txt

2
OUTCAR
position.txt

3
OUTCAR
position.txt

Ga_N
0

OUTCAR
position.txt

1
OUTCAR
position.txt

-1
OUTCAR

(continues on next page)

8 Chapter 3. Case Study: Mg-doped GaN

Spinney, Release ’0.9.a2’

(continued from previous page)

position.txt
2

OUTCAR
position.txt

3
OUTCAR
position.txt

...
Ga

OUTCAR
N2

OUTCAR
Mg

OUTCAR
pristine

OUTCAR

For the study of Mg-doped GaN, we are considering the intrinsic defects as well, as these will always be present and
will affect the properties of the doped system.

3.2.1 Initialize an DefectiveSystem instance

The easiest way to process the calculations of point defects is through the class DefectiveSystem.

from spinney.structures.defectivesystem import DefectiveSystem
initialize the defective system, where calculations have been done with VASP
defective_system = DefectiveSystem('data', 'vasp')

Once the object has been initialized, we can use it to compute properties of interest.

3.3 Step 3. Calculate defect formation energies

The main quantity that characterizes a point defect it its formation energy. The periodic boundary conditions intro-
duced by supercell calculations lead to some artifacts that should be corrected. In this example we will employ the
correction scheme of Kumagai and Oba [KO14]. See the relevant section for more details.

In order to calculate the defect formation energy, we must feed to our DefectiveSystem instance some information
about our system.

3.3.1 1. Calculate the value for the chemical potentials

To calculate the defect formation energy Spinney need the absolute values of the chemical potentials: 𝜇𝑖 = 𝜇∘
𝑖 +∆𝜇𝑖.

In Step 1. Defining the values of chemical potentials we found ∆𝜇𝑖. We then need to calculate 𝜇∘
𝑖 . This can be easily

done with the help of the ase library.

values chemical potentials from standard state
dmu_ga = 0
dmu_mg = -0.668

prepare chemical potentials with proper values
paths with calculations results
path_defects = os.path.join('data', 'data_defects')

(continues on next page)

3.3. Step 3. Calculate defect formation energies 9

Spinney, Release ’0.9.a2’

(continued from previous page)

path_pristine = os.path.join('data', 'pristine', 'OUTCAR')
path_ga = os.path.join('data', 'Ga', 'OUTCAR')
path_mg = os.path.join('data', 'Mg', 'OUTCAR')

calculate chemical potentials
ase_pristine = ase.io.read(path_pristine, format='vasp-out')
mu_prist = 2*ase_pristine.get_total_energy()/ase_pristine.get_number_of_atoms()
ase_ga = ase.io.read(path_ga, format='vasp-out')
mu_ga = ase_ga.get_total_energy()/ase_ga.get_number_of_atoms() # Ga-rich
ase_mg = ase.io.read(path_mg, format='vasp-out')
mu_mg = ase_mg.get_total_energy()/ase_mg.get_number_of_atoms() # Mg-rich
mu_n = mu_prist - mu_ga # N-poor
mu_ga += dmu_ga
mu_mg += dmu_mg

feed the data to the instance
defective_system.chemical_potentials = {'Ga':mu_ga, 'N':mu_n, 'Mg':mu_mg}

3.3.2 2. Add information about the pristine and defective system

We need to feed the data relative to the pristine and defective systems that need to be used to calculate the defect
formation energies.

What is needed is:

• Valence band maximum eigenvalue

• Dielectric tensor

• Correction scheme method for electrostatic finite-size effects

eigenvalue of the valence band maximum
vbm = 5.009256
calculated dielectric tensor
e_rx = 5.888338 + 4.544304
e_rz = 6.074446 + 5.501630
e_r = [[e_rx, 0, 0], [0, e_rx, 0], [0, 0, e_rz]]

feed the data
defective_system.vbm = vbm
defective_system.dielectric_tensor = e_r
defective_system.correction_scheme = 'ko' # Kumagai and Oba

3.3.3 3. Calculate the defect formation energy

All the required information has been fed to the DefectiveSystem instance. We can now calculate the defect
formation energies.

defective_system.calculate_energies(False) # don't print to terminal
df = defective_system.data # data frame with calculated formation energies
print(df)

Output:

10 Chapter 3. Case Study: Mg-doped GaN

Spinney, Release ’0.9.a2’

Form Ene (eV) Form Ene Corr. (eV)
Defect Charge
N_Ga 2 7.022139 7.272291

3 7.435422 8.143598
-1 9.977779 10.237273
0 8.271712 8.271712
1 7.461967 7.464786

Ga_int 2 3.190741 3.956642
3 1.487580 3.063845
0 8.339166 8.339166
1 5.710694 5.964960

...

These are the defect formation energies calculated at the top of the valence band maximum, with or without electro-
static corrections for finite-size effects. We can also write them to a text file, in this case only the corrected values are
written:

defective_system.write_formation_energies('formation_energies_Mg_GaN.txt')

Produces formation_energies_Mg_GaN.txt:

#System Charge Form Ene Corr. (eV)
N_Ga 2 7.2722908069
N_Ga 3 8.1435978547
N_Ga -1 10.2372728320
N_Ga 0 8.2717122490
N_Ga 1 7.4647858911
Ga_int 2 3.9566415146
Ga_int 3 3.0638453220
Ga_int 0 8.3391662537
Ga_int 1 5.9649599825
...

3.4 Step 4. Calculate charge transition levels

Once the defect formation energies have been calculated, we can calculate the thermodynamic charge transition levels.
Spinney calculates them through the class Diagram. An instance of which is present in the DefectiveSystem
class.

To use it we need to feed it the band edges. We will report them setting the 0 to the valence band maximum.

defective_system.gap_range = (0, 1.713)
calculate charge transition levels
defective_system.diagram.transition_levels

Output:

#Defect type q/q'
Ga_N 2/3 0.441121

1/2 0.731836
0/1 1.250109

Ga_int 2/3 0.892796
Mg_Ga -1/0 0.179196
N_Ga 1/2 0.192495

0/1 0.806926

(continues on next page)

3.4. Step 4. Calculate charge transition levels 11

Spinney, Release ’0.9.a2’

(continued from previous page)

N_int 0/1 1.286762
Vac_Ga -1/0 0.482381

-2/-1 1.139556

We can also plot a diagram showing the transition levels within the band gap:

defective_system.diagram.plot(save_flag=True,
title='Mg-doped GaN Ga-rich limit',
legend=True,
x_label=r'E_F (eV)',
save_title='diagram_defsys')

Saves the file diagram_defsys.pdf :

3.5 Step 4. Calculate defect concentrations

Once defect formation energies have been calculated, it is also possible to calculate equilibrium defect concentrations
in the dilute limit. Spinney calculated defect concentrations through the EquilibriumConcentrations. An
instance thereof is available in the DefectiveSystem instance. To calculate the concentrations, we need to feed
some more data to the DefectiveSystem instance. For more details about these quantities see Equilibrium defect
concentrations in the dilute limit.

from spinney.io.vasp import extract_dos
import numpy as np

get the density of states of the pristine system
dos = extract_dos('vasprun.xml')[0]

site concentrations for point defects
volume = ase_pristine.get_volume()/ase_pristine.get_number_of_atoms()
volume *= 4
factor = 1e-8**3 * volume
factor = 1/factor
site_conc = {'Ga_N':4, 'N_Ga':4, 'Vac_N':4, 'Vac_Ga':4,

'Ga_int':6, 'N_int':6, 'Mg_Ga':4,
'electron':36 , 'hole':36}

site_conc = {key:value*factor for key, value in site_conc.items()}

defective_system.dos = dos
defective_system.site_concentrations = site_conc
calculate defect concentrations on a range of temperature
defective_system.temperature_range = np.linspace(250, 1000, 100)

concentrations = defective_system.concentrations

We can now access equilibrium properties of interest, such as equilibrium carrier concentrations:

import matplotlib.pyplot as plt

carriers = concentrations.equilibrium_carrier_concentrations

the sign is positive, except for very low temperatures:
holes are the main carriers
T_plot = 1000/defective_system.temperature_range

(continues on next page)

12 Chapter 3. Case Study: Mg-doped GaN

Spinney, Release ’0.9.a2’

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
EF (eV)

0

2

4

6

8

E f
 (e

V)

N_Ga
Ga_int
Ga_N
N_int
Vac_N
Mg_Ga
Vac_Ga

Mg-doped GaN Ga-rich limit

3.5. Step 4. Calculate defect concentrations 13

Spinney, Release ’0.9.a2’

(continued from previous page)

plt.plot(T_plot, np.abs(carriers), linewidth=3)
plt.yticks([1e-10, 1, 1e10, 1e20])
plt.xlim(1, 4)
plt.yscale('log')
plt.title('Carrier concentrations')
plt.xlabel('1000/T (1/K)')
plt.ylabel(r'c (cm$^{-3}$)')
plt.tight_layout()
plt.show()

As the entry of carriers are always positive except for low temperatures, holes are the main charge carriers in
the system, meaning that the doping with Mg is effective at high temperatures, while holes are fast compensated by
intrinsic defects for lower temperatures.

14 Chapter 3. Case Study: Mg-doped GaN

CHAPTER

FOUR

TUTORIAL

The properties of many materials can be strongly affected by the introduction of impurity atoms. For example, the
doping of semiconductor materials lies at the foundation electronics industry.

The amount of impurities sufficient to significantly alter the property of materials is in general in the ppm. Intrinsic
defects, which are ubiquitous in every material, also generally appear in this concentration range.

For such small concentrations, it can be assumed that each defect will not feel the presence of other defects. De-
spite the truth of this claim should be carefully assessed on a case-by-case basis - defect complexes do occurr and
concentrations of intrinsic defects might be considerable, as in the case of nonstoichiometric compounds - defect mu-
tual independence, that is considering the dilute limit, is generelly assumed since it allows to easily obtains relevant
properties of defective systems, such as defect and carrier concentrations.

Spinney implements the formulism devised for point defects in the dilute limit, it is also assumed that first-principles
calculations of point defects are performed within the supercell formalism [PTA+92], which is currently the most
widely employed.

This tutorial will review the most common steps involved in the study of point defects in solids using first-principles
simulations and will show how Spinney can be used to assist with the investigation.

4.1 The defect formation energy in the supercell approach

Within the supercell approach, the formation energy of a point defect d in charge state q can be expressed as the
difference in grand potential that the formation of the defect in an otherwise pristine crystal entails [ZN91]:

∆𝐸𝑓 (𝑑; 𝑞) = 𝐺(𝑑; 𝑞) −𝐺(bulk) −
∑︁
𝑖

𝑛𝑖𝜇𝑖 + 𝑞 (𝜖𝑉 𝐵𝑀 + 𝐸𝐹) + 𝐸𝑐𝑜𝑟𝑟 (4.1)

where ∆𝐸𝑓 (𝑑; 𝑞) represents the defect formation energy, 𝐺(𝑑; 𝑞) and 𝐺(bulk) are the free energies of the defective
and pristine supercells, respectively, 𝑛𝑖 are the amount of atoms added or removed from the host material in order to
create the defect, 𝜇𝑖 are the chemical potentials of these atoms, 𝜖𝑉 𝐵𝑀 is the valence band maximum eigenvalue, 𝐸𝐹 is
the Fermi level, which can range within the material band gap, and 𝐸𝑐𝑜𝑟𝑟 is an energy term that corrects for finite-size
effects originating from the use of the supercell approach. As a common approximation, instead of the free energies
we will use the electronic energies, the main quantity calculated by first-principles codes.

Note: In the following tutorials, to illustrate how ∆𝐸𝑓 (𝑑; 𝑞) can be calculated with Spinney, we will use an
example the formation energy of a B vacancy in the charge state -3 in cubic BN.

Read the quickstart guide for a succint tutorial explaining how to calculate the defect formation energy with Spinney
using output files from VASP and WIEN2k.

Otherwise, read the In-depth Tutorial.

15

Spinney, Release ’0.9.a2’

Contents

• In-depth Tutorial

– Initialize a PointDefect object

– Calculating the defect formation energy

• Quickstart Guide

– Using VASP

– Using WIEN2k

• Manage a defective system with the class DefectiveSystem

4.1.1 In-depth Tutorial

Initialize a PointDefect object

The easiest way to calculate ∆𝐸𝑓 (𝑑; 𝑞) in Spinney is by using the PointDefect class. To initialize a
PointDefect object, we need a Atoms object of the ASE library representing the defective system. Such ob-
ject must have attached a Calculator implementing a get_total_energy() method that returns the energy
of the defective system.

Using VASP

ASE supports several first-principles codes; for example, if VASP is used, and the result of the calculation of the
defective system is stored in the OUTCAR_def file, then an Atoms object suitable for initializing a PointDefect
instance can be simply obtained using the ase.io.read() function. The PointDefect object can in this case
be initialized with few lines of Python code:

from spinney.structures.pointdefect import PointDefect
import ase.io

use ASE to read the OUTCAR file of the defective system
outcar = ase.io.read('OUTCAR_def', format='vasp-out')
initialize a Spinney PointDefect object
pd = PointDefect(outcar)

Using WIEN2k or other codes not fully supported by ASE

While ASE can read the outputs of several first-principles codes, not all of them are supported. For example, up to
the version 3.17, the last ASE version compatible with Spinney, there is no function that can read the .scf files
produced by WIEN2k. In this case, one can write an ad hoc function serving this purpose.

Warning: When writing the helper functions needed to create an ASE Atoms object to be used for initialize a
Spinney PointDefect instance from the output files of a first-principles suite not yet supported by ASE, you
should convert lengths in Angstrom and energies in eV. This is the defalut in ASE and what is assumed by the
PointDefect class.

16 Chapter 4. Tutorial

https://wiki.fysik.dtu.dk/ase/index.html
https://www.vasp.at
http://www.wien2k.at

Spinney, Release ’0.9.a2’

In the case of WIEN2k, ASE can read the .struct files of WIEN2k and return the proper Atoms object. In this
case create the ASE Atoms object required by PointDefect is easy.

Suppose you have calculated the defective supercell using WIEN2k and have the files defective.scf and
defective.struct. In this case, the general way for initializing a PointDefect object is:

1. read the total energy calculated by WIEN2k in the defective.scf file, for example using a grep command
on Linux:

grep :ENE defective.scf

2. use ASE to read the defective.struct file and initialize an Atoms object:

struct=ase.io.read('defective.struct', format='struct')

3. use the DummyAseCalculator class to initialize a dummy calculator and use the method
set_total_energy() to insert the calculated energy found in point 1 (the energy has to be converted
into units of eV, which is the energy unit used in ASE),

from spinney.structures.pointdefect import PointDefect, DummyAseCalculator
from spinney.constants import conversion_table
convert the energy read from the .scf file to eV
energy = -5048.05765754*conversion_table['Ry']['eV']
calc = DummyAseCalculator(struct)
calc.set_total_energy(energy)

4. attach the dummy calculator to the Atoms object created in step 2,

struct.set_calculator(calc)

5. Use this Atoms object to initialize a new PointDefect object.

pd = PointDefect(struct)

This procedure can be generally used for any first-principles code for which ASE can create an Atoms object with the
structural information but without information about the system energy.

For WIEN2k, Spinney offers some helping functions. The proper Atoms object that can be used to initialize
a PointDefect object can be obtained using the function prepare_ase_atoms_wien2k() which takes as
arguments the .struct and .scf files and returns the Atoms object with a dummy calculator.

from spinney.io.wien2k import prepare_ase_atoms_wien2k
ase_scf = prepare_ase_atoms_wien2k('defective.struct', 'defective.scf')
pd = PointDefect(ase_scf)

Similar helping functions can be easily written for any other ab initio code.

Calculating the defect formation energy

Once a new PointDefect instance has been created, we can feed it the data necessary to calculate the defect
formation energy. Then needed data come from the very definition of ∆𝐸𝑓 (𝑑; 𝑞) of equation (4.1).

4.1. The defect formation energy in the supercell approach 17

Spinney, Release ’0.9.a2’

Feed the required data to the PointDefect instance

1. Energy of the host material.

𝐺(bulk) is read from an ASE Atoms object representing the pristine system. Such object must thus have
attached a calculator. The necessary steps are analogous to the one described in the previous section for the
defective system. Once the instance has been created, we can feed it to the PointDefect object:

for example, if VASP was used
ase_pristine = ase.io.read('OUTCAR_pristine', format='vasp-out')
pd.set_pristine_system(ase_pristine)

2. Chemical potential of the elements involved in the creation of the defect.

Suppose we are interested in the defect formation energy in the B-rich limit. In order to find 𝜇B, we need to
calculate the reference state for the B atom. We can take it as the 𝛼−B phase in the rhombohedral crystal family.
𝜇B is then equal to the system energy per atom. 𝜇N is then simply obtained as 𝜇N = 𝐸BN − 𝜇B. Suppose 𝜇B

and 𝜇N have been stored in the variables chem_pot_B and chem_pot_N, respectively. Then we can inform
the PointDefect object that we want to use these values of the chemical potentials by typing:

pd.set_chemical_potential_values({'N':chem_pot_N, 'B':chem_pot_B})

3. Information about the pristine system.

From equation (4.1), we see that we also need 𝜖𝑉 𝐵𝑀 and 𝐸𝐹 . If the values are stored in the variables e_vbm
and fermi_level, respectively, then we can feed them to the PointDefect object using:

pd.set_vbm(e_vbm)
pd.set_fermi_level_value_from_vbm(fermi_level)

4. Information about the defective system.

This information is needed in order to compute 𝐸𝑐𝑜𝑟𝑟. This term mainly corrects for electrostatic finize-size
effects due to the presence of charged defects. As other finize-size errors can generelly be made negligibly small
by increasing the supercell size [FGH+14], the Spinney package implements two popular correction schemes
for correcting electrostatic finite-size effects, as explained in detail in Correction schemes for electrostatic finite-
size effects. Each of correction scheme requires some specific data in order to compute 𝐸𝑐𝑜𝑟𝑟; additionally, some
data are required by every scheme.

General data:

• The defect charge state 𝑞, q=-3 in our example:

pd.set_defect_charge(q)

• The defect position with respect to the supercell basis vectors, def_position=(0.5, 0.5, 0.5),
if the vacancy was placed in the centre of the supercell:

pd.set_defect_position(def_position)

• The dielectric constant/tensor of the host material dielectric_tensor:

pd.set_dielectric_tensor(dielectric_tensor)

Correction-scheme-specific data:

• First we need to inform the PointDefect instance about which correction scheme we intend to use.
Spinney implements two state-of-the-art methods: the scheme proposed by Freysoldt, Neugebauer and

18 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

Van de Walle, [FNVdW09] and the improved version proposed by Kumagai and Oba [KO14]. More
information about such schemes can be found in Correction schemes for electrostatic finite-size effects.

To specify the correction scheme of Freysoldt, Neugebauer and Van de Walle:

pd.set_finite_size_correction_scheme('fnv')

To specify the correction scheme of Kumagai and Oba:

pd.set_finite_size_correction_scheme('ko')

• Next, we need to add the required scheme-specific data. In this example we will consider the schem of
Kumagai and Oba. We refer to Correction schemes for electrostatic finite-size effects for details about the
scheme of Freysoldt, Neugebauer and Van de Walle.

The method of Kumagai and Oba requires the electrostatic potential calculated at the ionic sites for the
pristine and defective systems. Such data have to be stored in two arrays, potential_pristine,
potential_defective. The way these data are obtained is specific of the employed first-principle
package. We provide functions to extract such information from VASP and WIEN2k outputs.

– VASP: the required output files are the OUTCAR files for the pristine and defective supercells,
OUTCAR_pristine and OUTCAR_def, respectively.

from spinney.io.vasp import extract_potential_at_core_vasp
potential_pristine = extract_potential_at_core_vasp('OUTCAR_pristine')
potential_defective = extract_potential_at_core_vasp('OUTCAR_def')

– WIEN2k: the required output files are the .struct and .vcoul files for the pristine and defective
systems: pristine.struct/.vcoul and defective.struct/.vcoul, respectively.

from spinney.io.wien2k import extract_potential_at_core_wien2k
potential_pristine = extract_potential_at_core_wien2k('pristine.struct',
→˓'pristine.vcoul')
potential_defective = extract_potential_at_core_wien2k('defective.struct',
→˓ 'defective.vcoul')
convert to eV
potential_pristine *= conversion_table['Ry']['eV']
potential_defective *= conversion_table['Ry']['eV']

– Other first-principles codes: for other codes, one needs to write an output-specific helper
function in order to extract the ionic-site electrostatic potential and initialize the arrays:
potential_pristine and potential_defective.

Once the arrays containing the electrostatic potential at the ionic sites have been created, we can feed the
to the PointDefect instance:

pd.add_correction_scheme_data(potential_pristine=potential_pristine,
potential_defective=potential_defective)

the add_correction_scheme_data() takes correction-scheme-specific keyword arguments.

4.1. The defect formation energy in the supercell approach 19

Spinney, Release ’0.9.a2’

Obtaining the defect formation energy

Once the PointDefect object has been initializated and the needed data has been fed to it, we can obtain the defect
formation energy.

energy without adding corrections for electrostatic finite-size effects
uncorrected_energy = pd.get_defect_formation_energy()
corrected energy
corrected_energy = pd.get_defect_formation_energy(True)

4.1.2 Quickstart Guide

Calculate the formation energy of charged point defects using Spinney is easy and fast. In this getting-started guide
we will explain how to obtain this quantity for a Boron vacancy in charge state -3 in the B-rich limit. For correcting
for electrostatic finite-size effects we apply the method of Kumagai and Oba [KO14].

We give explicit examples using two popular first-principles code:

• VASP

• WIEN2k

Each ab initio code produces different outputs; however the information necessary to calculate the defect formation
energy is generally present somewhere in these output files. To use Spinney with a different first-principle code, you
will need to create some ad hoc helper functions. Read the whole guide for more information.

Using VASP

The snippet of code below shows how the formation energy of the defect can be calculated from VASP output files. It
is assumed that the script working directory contains the following files:

• OUTCAR files of the pristine and defective supercells: OUTCAR_pristine and OUTCAR_defective,
respectively.

• OUTCAR file for the reference state of bulk B: OUTCAR_B

Moreover, the following variables need to be created:

• vbm: the valence-band-maximum eigenvalue of the host material.

• e_r: the dielectric tensor/constant of the host material.

• defect_position: the defect position in the supercell in fractional coordinates.

• q: the defect charge state (-3 in this example).

from spinney.structures.pointdefect import PointDefect
from spinney.io.vasp import extract_potential_at_core_vasp
from spinney.tools.formulas import count_elements

import ase.io

initialize a point defect object
ase_defective = ase.io.read('OUTCAR_defective', format='vasp-out')
pd = PointDefect(ase_defective)

Feed it the data
ase_pristine = ase.io.read('OUTCAR_pristine', format='vasp-out')

(continues on next page)

20 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

(continued from previous page)

pd.set_pristine_system(ase_pristine)
get the chemical potential of Boron
ase_boron = ase.io.read('OUTCAR_B', format='vasp-out')
chem_pot_B = ase_boron.get_total_energy()/ase_boron.get_number_of_atoms()
get the chemical potential of Nitrogen in the B-rich conditions
elements = count_elements(ase_pristine.get_chemical_formula())
chem_pot_N = ase_pristine.get_total_energy() - elements['B']*chem_pot_B
chem_pot_N /= elements['N']
pd.set_chemical_potential_values({'N':chem_pot_N, 'B':chem_pot_B})
set valence band maximum, the Fermi level is set by default to zero
pd.set_vbm(vbm)
if one wants a Fermi level not equal to 0, uncomment:
pd.set_fermi_level_value_from_vbm(E_F)

data for the correction scheme
pd.pd.set_defect_charge(q)
pd.set_defect_position(defect_position)
pd.set_dielectric_tensor(e_r)
scheme of Kumagai and Oba
pd.set_finite_size_correction_scheme('ko')
get the required data and feed them to the instance
pot_pristine = extract_potential_at_core_vasp('OUTCAR_pristine')
pot_defective = extract_potential_at_core_vasp('OUTCAR_defective')
pd.add_correction_scheme_data(potential_pristine=pot_pristine,

potential_defective=pot_defective)

calculate the defect formation energy
uncorrected_energy = pd.get_defect_formation_energy()
corrected_energy = pd.get_defect_formation_energy(True)

Using WIEN2k

The snippet of code below shows how the formation energy of the defect can be calculated from WIEN2k output files.
It is assumed that the script working directory contains the following files:

• .struct, .scf and .vcoul files of the pristine and defective supercells: pristine.struct/.scf/.
vcoul and defective.struct/.scf/.vcoul, respectively.

• .struct and .scf files for the reference state of bulk B: boron.struct/.scf

Moreover, the following variables need to be created:

• vbm: the valence-band-maximum eigenvalue of the host material.

• e_r: the dielectric tensor/constant of the host material.

• defect_position: the defect position in the supercell in fractional coordinates.

• q: the defect charge state (-3 in this example).

from spinney.structures.pointdefect import PointDefect
from spinney.io.wien2k import prepare_ase_atoms_wien2k
from spinney.io.wien2k import extract_potential_at_core_wien2k
from spinney.tools.formulas import count_elements
from spinney.constants import conversion_table

initialize a point defect object

(continues on next page)

4.1. The defect formation energy in the supercell approach 21

Spinney, Release ’0.9.a2’

(continued from previous page)

ase_defective = prepare_ase_atoms_wien2k('defective.struct', 'defective.scf')
pd = PointDefect(ase_defective)

Feed it the data
ase_pristine = prepare_ase_atoms_wien2k('pristine.struct', 'pristine.scf')
pd.set_pristine_system(ase_pristine)
get the chemical potential of Boron
ase_boron = prepare_ase_atoms_wien2k('boron.struct', 'boron.scf')
chem_pot_B = ase_boron.get_total_energy()/ase_boron.get_number_of_atoms()
get the chemical potential of Nitrogen in the B-rich conditions
elements = count_elements(ase_pristine.get_chemical_formula())
chem_pot_N = ase_pristine.get_total_energy() - elements['B']*chem_pot_B
chem_pot_N /= elements['N']
pd.set_chemical_potential_values({'N':chem_pot_N, 'B':chem_pot_B})
set valence band maximum, the Fermi level is set by default to zero
pd.set_vbm(vbm)
if one wants a Fermi level not equal to 0, uncomment:
pd.set_fermi_level_value_from_vbm(E_F)

data for the correction scheme
pd.pd.set_defect_charge(q)
pd.set_defect_position(defect_position)
pd.set_dielectric_tensor(e_r)
scheme of Kumagai and Oba
pd.set_finite_size_correction_scheme('ko')
get the required data and feed them to the instance
pot_pristine = extract_potential_at_core_wien2k('pristine.struct',

'pristine.vcoul')
pot_defective = extract_potential_at_core_wien2k('defective.struct',

'defective.vcoul')
convert to eV
pot_pristine *= conversion_table['Ry']['eV']
pot_defective *= conversion_table['Ry']['eV']
pd.add_correction_scheme_data(potential_pristine=pot_pristine,

potential_defective=pot_defective)

calculate the defect formation energy
uncorrected_energy = pd.get_defect_formation_energy()
corrected_energy = pd.get_defect_formation_energy(True)

4.1.3 Manage a defective system with the class DefectiveSystem

One is usually interested in the study of several point defects in a defective system. In this case, one could insert the
code snippets shown above into a loop and create a PointDefect instance for each point defect.

This however might result in too much visual noise. Spinney offers the class DefectiveSystem to manage sev-
eral point defects in the same host material. To initialize a new instance, one needs to specify the directory containing
the results of the first-principles calculations (data_path) and the code used to produce them. The class expects
this kind of directory tree structure:

"data_path"
data_defects

"defect_name"
"charge_state"

"files"

(continues on next page)

22 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

(continued from previous page)

"charge_state"
"files"

"charge_state"
"files"

"charge_state"
"files"

"defect_name"
...

pristine
"files"

• the names data_defect and pristine are directories and are mandatory, as the class will look in these
places in order to find the required information about the defective and pristine systems.

• files are the output of the first-principles calculations required to calculate the defect formation energy. The
number and type of required files depends on the employed first-principles code and on whether one wants to
apply finite-size-effects corrections.

– For VASP: one needs at least the OUTCAR file. If the correction scheme fnv has to be used,
then also the LOCPOT file must be present.

– For WIEN2k: one needs at least the case.struct and case.scf files. If the correction scheme ko
has to be used, then also the case.vcoul file must be present. The fnv method has not yet been
implemented in WIEN2k.

– In all cases, if any correction scheme has to be used, one needs to add a file named position.
txt with the fractional coordinates of the defective site on a single line, each entry separated by
a white space. For example:

0.5 0.5 0.5

• charge_state are directories and must be integers representing the defect charge state. The value specify
by charge_state will be considered to be the charge state of the defect.

• defect_name are directories, they can have any name that can describe the defective system.

• Any other directories can appears below data_path, these will be ignored by the class.

We can take as an example the study of the defect chemistry of intrinsic GaN using the code VASP. In this case the
data_path directory tree would look like this:

data_path
data_defects

Ga_int
0

OUTCAR
position.txt

1
OUTCAR
position.txt

2
OUTCAR
position.txt

3
OUTCAR
position.txt

Ga_N
0

(continues on next page)

4.1. The defect formation energy in the supercell approach 23

Spinney, Release ’0.9.a2’

(continued from previous page)

OUTCAR
position.txt

1
OUTCAR
position.txt

-1
OUTCAR
position.txt

2
OUTCAR
position.txt

3
OUTCAR
position.txt

...
Ga

OUTCAR
N2

OUTCAR
pristine

OUTCAR

We can now initialize a new instance of DefectiveSystem:

defective_system = DefectiveSystem('data', 'vasp')

Similarly to the initialization of a PointDefect object, in order to calculate the defect formation energies we need
some data relative to the pristine system and the chemical potential values. These can be assigned as object attributes:

calculate chemical potential values in the Ga-rich limit
path_pristine = os.path.join('data', 'pristine', 'OUTCAR')
path_ga = os.path.join('data', 'Ga', 'OUTCAR')
ase_ga = ase.io.read(path_ga, format='vasp-out')
ase_pristine = ase.io.read(path_pristine, format='vasp-out')
chem_pot_ga = ase_ga.get_total_energy()/ase_ga.get_number_of_atoms()
elements = count_elements(ase_pristine.get_chemical_formula())
chem_pot_n = ase_pristine.get_total_energy() - elements['Ga']*chem_pot_ga
chem_pot_n /= elements['N']

valence band maximum and dielectric tensor
vbm = 5.009256
e_rx = 5.888338 + 4.544304
e_rz = 6.074446 + 5.501630
e_r = [[e_rx, 0, 0], [0, e_rx, 0], [0, 0, e_rz]]

add the data
defective_system.vbm = vbm
defective_system.dielectric_tensor = e_r
defective_system.chemical_potentials = {'Ga':chem_pot_ga, 'N':chem_pot_n}

use the correction scheme of Kumagai and Oba
defective_system.correction_scheme = 'ko'
calculate defect formation energies for each point defect
and print output to the screen
defective_system.calculate_energies(verbose=True)

The calculated defect formation energy are stored in a Pandas dataframe and can be accessed from the attribute data:

24 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

df = defective_system.data
printf(df)

will output:

Form Ene (eV) Form Ene Corr. (eV)
Defect Charge
N_Ga 2 7.022139 7.272291

3 7.435422 8.143598
-1 9.977779 10.237273
0 8.271712 8.271712
1 7.461967 7.464786

Ga_int 2 3.190741 3.956642
3 1.487580 3.063845
0 8.339166 8.339166
1 5.710694 5.964960

...

they can be written to a text file, in a format readable by other modules of Spinney by calling
write_formation_energies():

defective_system.write_formation_energies('formation_energies_GaN_Ga_rich.txt')

The PointDefect objects for each point defect processed by the DefectiveSystem instance are accessible in a
list through the attribute point_defects:

for pdf in defective_system.point_defects:
print(pdf.my_name)

will print:

N_Ga 2
N_Ga 3
N_Ga -1
N_Ga 0
N_Ga 1
Ga_int 2
Ga_int 3
Ga_int 0
Ga_int 1
...

4.2 Correction schemes for electrostatic finite-size effects

Contents

• Theoretical introduction

• Implementation in Spinney

– The scheme of Freysoldt, Neugebauer and Van de Walle

* Example using VASP

* Example using WIEN2k

4.2. Correction schemes for electrostatic finite-size effects 25

Spinney, Release ’0.9.a2’

* Obtaining more information on the finite-size corrections

– The scheme of Kumagai and Oba

* Example using VASP

* Example using WIEN2k

* Obtaining more information on the finite-size corrections

4.2.1 Theoretical introduction

The main artifact of the supercell approach for point-defect calculations consists in the introduction of periodic images
of the defect located in the simulation cell. Such periodically-repeated array of defects corresponds to very high defect
concentrations for commonly used supercell types.

In such case, defect-defect interactions are large and can considerably affect the predicted energy of the point defect.

Among the kinds of defect-defect interactions, electrostatic ones are never negligible for any practical supercell size.

The study of point defects in the dilute limit then requires some scheme to correct for such spurious electrostatic
interactions.

The introduction of a point defect will induce a redistribution of the host material electronic charge density. In the ideal
case of an isolated point defect, we call this defect-induced charge density 𝜌𝑖𝑠𝑜. On the other hand, in the supercell
method, due to the application of periodic boundary conditions, the defect-induced charge density will be different:
𝜌𝑝𝑒𝑟. Moreover, for charged point defects, periodic boundary conditions require the introduction of a neutralizing
background, usually taken as an homogeneous jellium of density − 𝑞

𝑉 , where 𝑞 is the defect charge state and 𝑉 is the
supercell volume.

The defect-induced electrostatic potential can be obtained from the induced charge density by solving Poisson equation
with the proper boundary conditions. This will yield the potentials 𝜑𝑖𝑠𝑜 and 𝜑𝑝𝑒𝑟 for the 𝜌𝑖𝑠𝑜 and 𝜌𝑝𝑒𝑟, respectively:

∇2𝜑(r) = −4𝜋𝜌(r)

Correction schemes for electrostatic finite-size effects assume that the point defect induces a charge density localized
in the supercell. In this case the charge densities induced by periodic and isolated defect can be considered to be the
same within the supercell: 𝜌𝑖𝑠𝑜 = 𝜌𝑝𝑒𝑟 = 𝜌 in 𝑉 . In addition:

𝑞 =

∫︁
𝑉

𝜌𝑖𝑠𝑜(r) 𝑑r =

∫︁
𝑉

𝜌𝑝𝑒𝑟(r) 𝑑r

Considering the defect-induced electrostatic energy per supercell, what it is obtained employing periodic boundary
conditions is the quantity:

𝐸𝑝𝑒𝑟 =
1

2

∫︁
𝑉

𝜑𝑝𝑒𝑟(r)
(︁
𝜌(r) − 𝑞

𝑉

)︁
𝑑r

while ideally we would like to obtain:

𝐸𝑖𝑠𝑜 =
1

2

∫︁
𝑉

𝜑𝑖𝑠𝑜(r)𝜌(r) 𝑑r

Correction schemes for electrostatic finite-size effects aim to calculate the corrective term:

𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑖𝑠𝑜 − 𝐸𝑝𝑒𝑟 (4.2)

Spinney implements two state-of-the-art correction schemes:

26 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

• The scheme proposed by Freysoldt, Neugebauer and Van de Walle [FNVdW09].

• The scheme proposed by Kumagai and Oba [KO14].

The latter is an improvement over the former. In both cases, the correction energy of equation (4.2) is expressed as:

𝐸𝑐𝑜𝑟𝑟 = −𝐸𝑙𝑎𝑡 + 𝑞∆𝜑

𝐸𝑙𝑎𝑡 takes into account the interaction of 𝜌 with the host material and the jellium background in periodic boundary
conditions, while ∆𝜑 is an alignment term.

𝜌 is modelled with a spherically-symmetric charge distribution. In the scheme of Freysoldt, Neugebauer and Van de
Walle this is generally taken as a linear combination of a Gaussian function and an exponential one:

𝜌(𝑟) = 𝑞
(︁
𝑥𝑁1𝑒

−𝑟/𝛾 + (1 − 𝑥)𝑁2𝑒
−𝑟2/𝛽2

)︁
(4.3)

where 𝑁1 and 𝑁2 are normalization constants. 𝛾 and 𝛽 are the parameters describing the exponential and Gaussian
functions, respectively. In the scheme of Kumagai and Oba a point-charge model is used instead. This allows to easily
generalize the scheme to anisotropic materials.

Regarding ∆𝜑, this is obtained from comparing the electrostatic potential of the defective and pristine systems with the
one generated by the model 𝜌 in a region of the crystal far from the defect. The scheme of Freysoldt, Neugebauer and
Van de Walle uses the plane-averaged potential in order to compute the alignment term; while the scheme of Kumagai
and Oba uses atomic-site potentials. The latter have been show to converge better far from the defect, in particularly
when lattice relaxations are important [KO14].

4.2.2 Implementation in Spinney

The PointDefect class can calculate the energy for correcting electrostatic finite-size effects using both the scheme
of Freysoldt, Neugebauer and Van de Walle and the one of Kumagai and Oba.

Each scheme needs its own set of data in order to compute 𝐸𝑐𝑜𝑟𝑟, this have to fed to a PointDefect instance us-
ing the method add_correction_scheme_data(). This method accepts correction-scheme-specific keywords
arguments, which we will explain now.

Warning: each time add_correction_scheme_data() is called, all the keywords which have not been
explicitly given by the user will take default values. This means that every time the method is called, the
PointDefect object will overwrite the data passed with a former call of add_correction_scheme_data.

The scheme of Freysoldt, Neugebauer and Van de Walle

The keywords arguments for add_correction_scheme_data() are:

• Mandatory arguments:

– potential_pristine: a 3D array containing the electrostatic potential calculated by first-principles
on a 3D grid for the pristine supercell.

– potential_defective: a 3D array containing the electrostatic potential calculated by first-principles
on a 3D grid for the defective supercell.

– axis: an integer with value 0, 1 or 2 which specifies the cell vector along which the plane-averaged
electrostatic potential will be calculated.

• Optional arguments:

4.2. Correction schemes for electrostatic finite-size effects 27

Spinney, Release ’0.9.a2’

– defect_density: a 3D array containing a model defect-induced charge density calculated on a 3D
grid. For example, defect_density can be obtained by projecting the electronic charge density onto
the defect-induced band.

If this argument is present, Spinney will fit the model charge density of equation (4.3) to
defect_density.

– gamma: a float. The parameter of the exponential function 𝛾 in equation (4.3). The default value is 1.

– beta: a float. The parameter of the Gaussian function 𝛽 in equation (4.3). The default value is 1.

– x_comb: a float between 0 and 1. Weight of the exponential function with respect to the Gaussian function
in modeling the defect-induced charge density. Default x_comb = 0. For x_comb = 0 the charge
density is modelled by a pure Gaussian; for x_comb = 1 by a pure exponential function.

– e_tol: a float, break condition for the iterative calculation of the correction energy. Value in Hartree.
Default: 1e-6 Ha.

– shift_tol: a float representing the tolerance to be used to locate the defect position along axis. The
default value is: 1𝑒− 5 × 𝑎, where 𝑎 is the length of the cell parameter defining axis.

Note: Most of the times the default parameters will be enough.

You might need to increase shift_tol considerarbly if the 3D used to calculate the electrostatic potential is too
coarse.

Example using VASP

To illustrate in detail how the correction scheme of Freysoldt, Neugebauer and Van de Walle is implemented in
Spinney, we will take the example of a Ga vacancy in the charge state -3 in cubic GaAs, modeled using a 3 × 3 × 3
supercell of the conventional cubic cell. This system is also studied in the authors’ original paper [FNVdW09].

The electrostatic potential on a 3D grid can be obtained in VASP by adding to the INCAR file the following lines
(example for VASP 5.2.12, compare with the documentation for you version):

PREC = High
LVHAR = .TRUE.
NGXF = 200
NGYF = 200
NGZF = 200

These options will write the LOCPOT file on a fine grid (the grid can be considerably less dense, depending on the
system).

The data for the potential_pristine and potential_defective keyword arguments can be obtained
easily using the class VaspChargeDensity.

from ase.calculators.vasp import VaspChargeDensity

locpot = VaspChargeDensity('LOCPOT')
potential_pristine = -1*locpot.chg[-1]*locpot.get_volume()

We can now calculate the defect formation energy. To do so we assume that the working directory contains the
following files:

• OUTCAR_prist and OUTCAR_def: OUTCAR files for pristine and defective supercell, respectively.

• LOCPOT_prist and LOCPOT_def: LOCPOT files for pristine and defective supercell, respectively.

28 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

• OUTCAR_Ga: OUTCAR file for the reference state of Ga.

import numpy as np
from ase.calculators.vasp import VaspChargeDensity
import ase.io
from spinney.structures.pointdefect import PointDefect
from spinney.defects import fnv

pristine system
pristine = ase.io.read('OUTCAR_prist')

Specifications of the defective system: V_Ga -3 in GaAs
q = -3 # charge state
dielectric_constant = 12.4 # from Freysoldt et al. PRL (2009) paper
def_position = np.array([0.33333333333, 0.5, 0.5]) # fractional coordinates defect
axis_average = 2 # axis along where the average potential is calculated
vbm = 4.0513 # valence band maximum

prepare a numpy 3D array with information about the electrostatic potential
locpot_prist = VaspChargeDensity('LOCPOT_prist') # read using ase
supercell = locpot_prist.atoms[-1]
locpot_def = VaspChargeDensity('LOCPOT_def')
locpot_arr_p = locpot_prist.chg[-1]*supercell.get_volume()*(-1)
locpot_arr_def = locpot_def.chg[-1]*supercell.get_volume()*(-1)
del locpot_prist; del locpot_def

Prepare the chemical potentials Ga-rich conditions
gallium = ase.io.read('OUTCAR_Ga')
mu_ga = gallium.get_total_energy()/gallium.get_number_of_atoms()

initialite PointDefect instance
defective = ase.io.read('OUTCAR_def')
pd = PointDefect(ase.io.read(defect))
pd.set_dielectric_tensor(dielectric_constant)
pd.set_defect_position(def_position)
pd.set_defect_charge(q)
pd.set_pristine_system(pristine)
pd.set_vbm(vbm)
correction scheme of Freysoldt, Neugebauer and Van de Walle
pd.set_finite_size_correction_scheme('fnv')
pd.add_correction_scheme_data(potential_pristine=locpot_arr_p,

potential_defective=locpot_arr_def,
axis=axis_average)

pd.set_chemical_potential_values({'Ga':mu_ga, 'As':None}, force=True)
print('Formation energy Ga-rich conditions, not corrected: ',

pd.get_defect_formation_energy())
print('Formation energy Ga-rich conditions, corrected: ',

pd.get_defect_formation_energy(True))

4.2. Correction schemes for electrostatic finite-size effects 29

Spinney, Release ’0.9.a2’

Example using WIEN2k

To illustrate in detail how the correction scheme of Freysoldt, Neugebauer and Van de Walle is implemented in
Spinney, we will take the example of a Ga vacancy in the charge state -3 in cubic GaAs, modeled using a 3 × 3 × 3
supercell of the conventional cubic cell. This system is also studied in the authors’ original paper [FNVdW09].

Obtaining more information on the finite-size corrections

More information related to the correction scheme can be accessed through the method
calculate_finite_size_correction() with the keyword argument verbose=True.

This returns a tuple, whose first element is the correction energy for finite-size effects and the second element is a
dictionary.

The python interface is independent on the employed first-principles code. We only assume that a PointDefect
instance has been initialized, as shown above. Such object is assumed to have been stored in the variable pd.

ecorr, dd = pd.calculate_finite_size_correction(verbose=True)
1D grid along which the average potential has been calculated
axis_grid = dd['Potential grid']
calculated long-range potential
lr_potential = dd['Model potential']
calculated short-range potential
sr_potential = dd['Alignment potential']
DFT potential defective system - pristine system
dft_potential = dd['DFT potential']
Potential alignment part of the correction energy
alignment_term = dd['Alignment term']
utility class to plot the electrostatic potential between the defect and
its image
Plott = fnv.FPlotterPot(axis_grid, dft_potential, lr_potential, sr_potential,

-alignment_term, 'z')
this will save a pdf file called plot_VGa_-3_GaAs.pdf
Plott.plot('VGa_-3_GaAs')

The result of this last block of code is the following picture:

30 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

0 2 4 6 8 10 12 14 16
Distance from defect along axis z (Å)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1
Lo

ca
l e

le
ct

ro
st

at
ic

po
te

nt
ia

l (
V)

DFT local potential: defective - pristine
Long-range potential
Short-range potential

VGa_-3_GaAs

The scheme of Kumagai and Oba

The keywords arguments for add_correction_scheme_data() are:

• Mandatory arguments:

– potential_pristine: a 1D array of length equal to the number of atoms in the pristine system.
The array elements store the electrostatic potential calculated by first-principles at the atomic sites in the
pristine supercell.

– potential_defective: a 1D array of length equal to the number of atoms in the defective system.
The array elements store the electrostatic potential calculated by first-principles at the atomic sites in the
defective supercell.

• Optional arguments:

– distance_tol: a float or an array with 3 elements. The rounding tolerance for comparing distances.
If a float is insert as input, it will be converted to an array of 3 elements. Each element is the tolerance
value in percentage of the length of the corresponding cell parameter. The default value is 1% for each cell
parameter.

– e_tol: a float. The condition for breaking the loop in the iterative calculation of the correction energy.
Value in eV. The default value is 1e-6 eV.

4.2. Correction schemes for electrostatic finite-size effects 31

Spinney, Release ’0.9.a2’

Example using VASP

To illustrate in detail how the correction scheme of Kumagai and Oba is implemented in Spinney, we will take the
example of a B vacancy in the charge state -3 in cubic BN, modeled using a 3 × 3 × 3 supercell of the conventional
cubic cell. This system is also studied in the authors’ original paper [KO14].

All the data needed by the Kumagai’s and Oba’s scheme are in the OUTCAR file.

The following block of code assumes that the working directory contains the files:

• OUTCAR_prist, OUTCAR_def: the OUTCAR files of the pristine and defective supercells, respectively.

• OUTCAR_B: the OUTCAR file of the reference state for Boron.

To calculate the defect formation energy with the correction scheme of Kumagai and Oba, you can use this snippet:

import numpy as np

import ase.io
from spinney.io.vasp import extract_potential_at_core_vasp
from spinney.structures.pointdefect import PointDefect

pristine system
pristine = ase.io.read('OUTCAR_prist')

Specifications of the defective system: V_B -3 in BN
q = -3 # charge state
e_r = (4.601064 + 2.314707) # electronic and ionic contribution to dielectric

constant, calculated with VASP
a = 0.41667
def_position = np.ones(3)*a # fractional coordinates defect
vbm = 7.2981 # valence band maximum

Prepare the chemical potentials B-rich conditions
boron = ase.io.read('OUTCAR_B')
mu_b = boron.get_total_energy()/boron.get_number_of_atoms()

prepare a numpy array with information about the electrostatic potential
pot_prist = extract_potential_at_core_vasp('OUTCAR_prist')
pot_def = extract_potential_at_core_vasp('OUTCAR_def')

initialite PointDefect instance
defective = ase.io.read('OUTCAR_def')
pd = PointDefect(defective)
pd.set_dielectric_tensor(e_r)
pd.set_defect_position(def_position)
pd.set_defect_charge(q)
pd.set_pristine_system(pristine)
pd.set_vbm(vbm)
pd.set_chemical_potential_values({'N':None, 'B':mu_b}, force=True)
correction scheme of Kumagai and Oba
pd.set_finite_size_correction_scheme('ko')
pd.add_correction_scheme_data(potential_pristine=pot_prist, potential_defective=pot_
→˓def)
print('Formation energy B-rich, uncorrected: {:.3f}'.format(

pd.get_defect_formation_energy()))
print('Formation energy B-rich, corrected: {:.3f}'.format(

pd.get_defect_formation_energy(True)))

The script will print:

32 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

Formation energy B-rich, uncorrected: 11.801
Formation energy B-rich, corrected: 14.275

Example using WIEN2k

To illustrate in detail how the correction scheme of Kumagai and Oba is implemented in Spinney, we will take the
example of a B vacancy in the charge state -3 in cubic BN, modeled using a 3 × 3 × 3 supercell of the conventional
cubic cell. This system is also studied in the authors’ original paper [KO14].

The data that are needed are the .struct, .scf and .vcoul files for the pristine and defective supercell.

Note: By default WIEN2k will not write the .vcoul file. To write it you need to modify the second line of the
.in0 file, by replacing NR2V with R2V before running your calculations.

The following block of code assumes that the working directory contains the files:

• pristine.struct and defective.struct: the .struct files for the pristine and defective supercell,
respectively.

• pristine.scf and defective.scf: the .scf files for the pristine and defective supercell, respectively.

• pristine.vcoul and defective.vcoul: the .vcoul files for the pristine and defective supercell,
respectively.

• boron.struct and boron.scf: the .struct and .scf files for the reference state of Boron.

To calculate the defect formation energy with the correction scheme of Kumagai and Oba, you can use this snippet:

import numpy as np

from spinney.structures.pointdefect import PointDefect
from spinney.constants import conversion_table
from spinney.io.wien2k import prepare_ase_atoms_wien2k
from spinney.io.wien2k import extract_potential_at_core_wien2k

pristine system
pristine = pristine = prepare_ase_atoms_wien2k('pristine.struct',

'pristine.scf')

Specifications of the defective system: V_B -3 in BN
q = -3 # charge state
e_r = (4.601064 + 2.314707) # electronic and ionic contribution to dielectric

constant
def_position = np.zeros(3) # fractional coordinates defect
vbm = 0.7037187925*conversion_table['Ry']['eV'] # valence band maximum

Prepare the chemical potentials B-rich conditions
boron = prepare_ase_atoms_wien2k('boron.struct', 'boron.scf')
mu_b = boron.get_total_energy()/boron.get_number_of_atoms()

prepare a numpy array with information about the electrostatic potential
pot_prist = extract_potential_at_core_wien2k('pristine.struct',

'pristine.vcoul')
pot_prist *= conversion_table['Ry']['eV']
pot_def = extract_potential_at_core_wien2k('defective.struct',

'defective.vcoul')

(continues on next page)

4.2. Correction schemes for electrostatic finite-size effects 33

Spinney, Release ’0.9.a2’

(continued from previous page)

pot_def *= conversion_table['Ry']['eV']

initialite PointDefect instance
defective = prepare_ase_atoms_wien2k('defective.struct',

'defective.scf')
pd = PointDefect(defective)
pd.set_dielectric_tensor(e_r)
pd.set_defect_position(def_position)
pd.set_defect_charge(q)
pd.set_pristine_system(pristine)
pd.set_vbm(vbm)
pd.set_chemical_potential_values({'N':None, 'B':mu_b}, force=True)
correction scheme of Kumagai and Oba
pd.set_finite_size_correction_scheme('ko')
pd.add_correction_scheme_data(potential_pristine=pot_prist, potential_defective=pot_
→˓def)
print('Formation energy B-rich, uncorrected: {:.3f}'.format(

pd.get_defect_formation_energy()))
print('Formation energy B-rich, corrected: {:.3f}'.format(

pd.get_defect_formation_energy(True)))

The script will print:

Formation energy B-rich, uncorrected: 11.995
Formation energy B-rich, corrected: 14.503

Obtaining more information on the finite-size corrections

More information related to the correction scheme can be accessed through the method
calculate_finite_size_correction() with the keyword argument verbose=True.

This returns a tuple, whose first element is the correction energy for finite-size effects and the second element is a
dictionary.

The dictionary contains the various contributions to 𝐸𝑐𝑜𝑟𝑟, some information about the sampled atomic-site potential
and the instance of the KumagaiCorr` class that has been used to calculate the correction energy term. Such instance
can be accessed from the dictionary with the keyword Corr object. From it, we can extract useful information,
which allow us, for example to plot the following picture:

This image can be obtained using this code snippet. The python interface is independent on the employed first-
principles code. We only assume that a PointDefect instance has been initialized, as shown above. Such object is
assumed to have been stored in the variable pd. For the meaning of the various potentials plotted in the figure, consult
the authors’s paper in reference [KO14].

import matplotlib
import matplotlib.pyplot as plt

matplotlib.rcParams.update({'font.size': 26})

ecorr, dd = pd.calculate_finite_size_correction(verbose=True)
corr_obj = dd['Corr object']

plt.figure(figsize=(8,8))
dist, pot_align_vs_dist = corr_obj.alignment_potential_vs_distance_sampling_region
plt.scatter(dist, pot_align_vs_dist, color='green', marker='^',

(continues on next page)

34 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

2 4 6 8
Distance (Å)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Po
te

nt
ia

l (
V)

VPC, q/b
VPC, q

Vq/b

Fig. 4.1: The picture shows the relevant potentials as a function of the distance from the point defect. Far from the
defect the potentials should be relatively flat and smooth. The shaded area represents the sampling region. Potentials
that are strongly oscillating in the sampling region indicate that either the supercell is too small, or the defect-induced
charge density is not very localized. In either case, convergence of the predicted defect formation energy as a function
of the supercell size should be carefully assessed.

4.2. Correction schemes for electrostatic finite-size effects 35

Spinney, Release ’0.9.a2’

(continued from previous page)

label=r'$\Delta V_{PC, q/b}$')
dist, pot = corr_obj.ewald_potential_vs_distance_sampling_region
plt.scatter(dist, pot, label=r'$V_{PC, q}$', color='blue')
dist, pot = corr_obj.difference_potential_vs_distance
plt.scatter(dist, pot, label=r'$V_{q/b}$', marker='x')
beginning of the sampling region
radius = corr_obj.sphere_radius
plt.axvspan(radius, 9, color='blue', alpha=0.3)
plt.plot(np.linspace(1.5, 9, 100), np.zeros(100), color='black',

linestyle='--')
plt.legend()
plt.xlabel(r'Distance (\AA)')
plt.ylabel(r'Potential (V)')
plt.xlim(1.5, 9)
plt.ylim(-3, 0.5)
plt.tight_layout()
plt.savefig('atomic_site_potential_convergence.pdf', format='pdf')
plt.show()

4.3 Thermodynamic limits for the chemical potentials

Contents

• Limiting values of the chemical potentials

• Plotting the feasible region

• Beyond binary compounds

• Including temperature and pressure effects through the gas-phase chemical potentials

The defect formation energy of equation (4.1) explictly depends on the chemical potentials of the elements which are
exchanged with the reservoir in order to introduct the point defect.

The thermodynamic stability of the host crystal imposes some constraints on the values these chemical potentials can
assume.

Consider for example the rutile phase of TiO2. If 𝜇𝑖 represents the chemical potential of element 𝑖 and ∆𝜇𝑖 represents
its value with respect to the element chemical potential in its standard state (say the HCP structure for Ti and the triplet
state of the O2 molecule for O), the following constraint have to be satisfied:

𝜇Ti + 2𝜇O = 𝜇TiO2(rutile)

𝑥𝜇Ti + 𝑦𝜇O ≤ 𝜇TixOy

𝜇Ti ≤ 𝜇Ti(HCP)

𝜇O ≤ 1

2
𝜇O2

Or equivalently:

∆𝜇Ti + 2∆𝜇O = ∆ℎTiO2(rutile)

𝑥∆𝜇Ti + 𝑦∆𝜇O ≤ ∆ℎTixOy

∆𝜇Ti ≤ 0

∆𝜇O ≤ 0

36 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

where ∆ℎ is the formation enthalpy per formula unit.

4.3.1 Limiting values of the chemical potentials

Defect formation energies are usually reported for the extreme conditions; in this case:

• O-rich conditions, where 𝜇O achieves its maximum value;

• Ti-rich conditions, where 𝜇Ti achieves its maximum values.

Such values can be obtained from the solution of the optimization problem of equation (4.3) or (4.3).

Spinney offers the Range class for this purpose.

Suppose that the formation energies per formula unit of the relevant Ti-O phases have been calculated and written on
a text file, formation_energies.txt like the one below:

Formation energies per formula unit calculated with PBEsol
#Compound E_f (eV/fu)
Ti 0.0000000000
O2 0.0000000000
TiO2_rutile -9.4742301250
Ti2O3 -15.2633270550
TiO -5.3865639660
Ti3O5 -24.8910858875

The problem in equation (4.3) can be solved creating an instance of the Range class.

The data needed by this class can be obtained from a text file analogous to the one above using the function
get_chem_pots_conditions().

This function takes four arguments:

• The text file with the calculated formation energies. get_chem_pots_conditions() assumes that each
row represents either the formation energies per formula unit calculated for a compound with respect to its
elements in the standard state, or the total energy of the compound, again per formula unit.

Comments can be added by starting a line with #.

Each line containing the energy data must have the form: compound_name<delimiter>energy.
compound_name must be a string containing the formula unit of the compound. Underscores can then be
added to separate other strings. <delimiter> is a string that divides compound_name and energy. By
default blank spaces are assumed. energy is a string representing a floating-point number.

• A list specifying the order of the variables (that is, the chemical elements).

• A list with all the compound_name in the text file that represent compounds characterized by an equality
constraint.

• (Optional) A string that specifies <delimiter> used in the text file.

The returned values can be used to initialize the Range class and some of its methods, like shown in the example
below:

from spinney.thermodynamics.chempots import Range, get_chem_pots_conditions

data = 'formation_energies.txt'

equality_compounds = ['TiO2_rutile']
order = ['O', 'Ti']
parsed_data= get_chem_pots_conditions(data, order, equality_compounds)

(continues on next page)

4.3. Thermodynamic limits for the chemical potentials 37

Spinney, Release ’0.9.a2’

(continued from previous page)

prepare Range instances
crange = Range(*parsed_data[:-1])

The minimum and maximum value that each variable (chemical potential) can obtain within the feasible region can by
accessed through the attribute variables_extrema of the class Range. This returns a 2D array, with 𝑛 rows and
2 columns, with n being the number of variables in equation (4.3). Each row gives the minimum and maximum value
of one variable, the order is the same we specified in order.

For example, typing:

print(crange.variables_extrema)

returns:

array([[-3.53160448e+00, -8.94320056e-14],
[-9.47423008e+00, -2.41102114e+00]])

The first row is relative to ∆𝜇O and indicates that this variable can range between -3.53 eV and 0 eV. The end point
of this interval represent the value of ∆𝜇O in the Ti-rich and O-rich limit, respectively.

One can see that ∆𝜇Ti has a maximum value of -2.41 eV (Ti-rich limit), meaning that thermodynamic equilibrium
between rutile and Ti is not possible.

4.3.2 Plotting the feasible region

Competing phases can be easily visualized by plotting the feasible region. This can be done in Spinney adding this
code snippet to the previous script:

range.set_compound_dict(parsed_data[-1])
let's use some pretty labels in the plot
the order of the axes must follow the order used for get_chem_pots_conditions
labels = [r'$\Delta \mu_{O}$ (eV)', r'$\Delta \mu_{Ti}$ (eV)']
crange.plot_feasible_region_on_plane([0,1], x_label=labels[0],

y_label=labels[1],
title='Rutile phase', save_plot=True)

Which saves the plot in the pdf file feasible_region_plane_0_1.pdf:

The feasible region has been intersected with the 0-1 plane, which is the plane spanned by the independent
chemical potentials. The ordering of these is the one that has been specified in order. In our example the
variable 0 is ∆𝜇O and variable 1 is ∆𝜇Ti. If instead we would have used [1, 0] as the first argument of
range.plot_feasible_region_on_plane, we would have obtained a plot with switched axes, saved as
feasible_region_plane_1_0.pdf

This plot represents the feasible region for the problem described by equation (4.3). In particular, the shaded area is
the feasible region determined by the inequality constratints and the black line is determined by the equality constraint.
Such plots offer a convenient way to visualize the relevant competing phases for given values of the element chemical
potentials.

From the picture it is clear that Ti3O5 would precipitate before the chemical potential of Ti reaches its standard state
value.

Warning: A PointDefect object takes the absolute values of the chemical potentials in order to calculate the
defect formation energy. These can be obtained from ∆𝜇 by adding to it the chemical potential of the standard

38 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

7.5 5.0 2.5 0.0
O (eV)

12

10

8

6

4

2

0

Ti
 (e

V)

Ti2O3
TiO
Ti3O5
O2
Ti

Rutile phase

4.3. Thermodynamic limits for the chemical potentials 39

Spinney, Release ’0.9.a2’

state. Equivalently, these values can be obtained by using equation (4.3) instead of equation (4.3) by modifying
the file formation_energies.txt accordingly.

4.3.3 Beyond binary compounds

Suppose we now want to consider rutile doped with Nb. We consider as a possible competing phase TiNb2O7 and
NbO2 (other compounds could be considered of course).

The file formation_energies.txt is modified accordingly and renamed formation_energies_with_nb.txt:

Formation energies per formula unit calculated with PBEsol
#Compound E_f (eV/fu)
Ti 0.0000000000
O2 0.0000000000
TiO2_rutile -9.4742301250
Ti2O3 -15.2633270550
TiO -5.3865639660
Ti3O5 -24.8910858875
TiNb2O7 -28.9191827617
Nb 0.0000000000
NbO2 -8.06605626125

To instantiate the proper Range object, one can type:

data_nb = 'formation_energies_with_nb.txt'

equality_compounds = ['TiO2_rutile']
order = ['O', 'Ti', 'Nb'] # must insert the new species
parsed_data= get_chem_pots_conditions(data_nb, order, equality_compounds)
prepare Range instances
crange_nb = Range(*parsed_data[:-1])

crange_nb.set_compound_dict(parsed_data[-1])
labels = [r'$\Delta \mu_{O}$ (eV)', r'$\Delta \mu_{Ti}$ (eV)', r'$\Delta \mu_{Nb}$
→˓(eV)']

We can now plot the feasible region on the O-Ti plane. Since we have an additional variable, we must specify the value
of ∆𝜇Nb that defines the plane intersecting the feasible region. We can do so by using the argument plane_values of
plot_feasible_region_on_plane(). This is a list and specifies the values of the variables which are not
used as independent variables in the plot.

We can for example consider Nb-rich conditions, where ∆𝜇Nb = 0. So that the independent variables are ∆𝜇O and
∆𝜇Ti. To plot the intersection of the feasible region with the plane ∆𝜇Nb = 0. of the 3D ∆𝜇O-∆𝜇Ti-∆𝜇Nb space
we set plane_axes=[0,1] and plane_values=[0]:

crange_nb.plot_feasible_region_on_plane([0, 1], x_label=labels[0],
y_label=labels[1],
plane_values = [0],
y_val_min = -10, # minimum value second

→˓variable
title='Rutile phase, Nb doping, Nb-rich',
save_plot=True,
save_title='feasible_region_Nb_rich')

This snippet will save a pdf file called feasible_region_Nb_rich.pdf :

40 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

8 6 4 2 0
O (eV)

10

8

6

4

2

0

Ti
 (e

V)

Ti2O3
TiO
Ti3O5
NbO2
Ti

Rutile phase, Nb doping, Nb-rich

4.3. Thermodynamic limits for the chemical potentials 41

Spinney, Release ’0.9.a2’

From the feasible region it is clear that for Nb-rich conditions (∆𝜇Nb = 0) rutile would not be thermodynamically
stable, as NbO2 would precipitate instead.

We could instead ask for which value of ∆𝜇Nb rutile would be stable in O-rich (∆𝜇O = 0) conditions. To do so, we
itersect the feasible region with the plane ∆𝜇O = 0 by setting plane_axes=[1, 2] and plane_values=[0].

crange_nb.plot_feasible_region_on_plane([1, 2], x_label=labels[1],
y_label=labels[2],
plane_values = [0],
title='Rutile phase, Nb doping, O-rich', save_

→˓plot=True,
save_title='feasible_region_O_rich')

The snippet will produce the picture:

15 10 5 0
Ti (eV)

14

12

10

8

6

4

2

0

N
b (

eV
)

Ti3O5
TiNb2O7
NbO2

Rutile phase, Nb doping, O-rich

We can see that the maximum value of ∆𝜇Nb compatible with the stability of rutile in oxygen-rich conditions is
determined by the formation of TiNb2O7. Using the class attribure variables_extrema_2d one can have access
to this value. The attribute is defined analogously as variables_extrema, but considers the optimization problem
after the intersection has been considered and refers to the two independent variables defining the plane axes, ∆𝜇Ti

and ∆𝜇Nb in this case.

print(crange_nb.variables_extrema_2d)

prints:

42 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

[[-9.47423013 -9.47423013]
[-inf -9.72247632]]

The second row of the array corresponds to ∆𝜇Nb and shows that its maximum value compatible with the existance of
rutile when ∆𝜇O = 0 is around -9.72 eV. At this point both ∆𝜇Nb and ∆𝜇O are fixed, there are then no more degrees
of freedom and ∆𝜇Ti can only have a single value which is fixed by the constraint of coexistance between rutile and
TiNb2O7.

4.3.4 Including temperature and pressure effects through the gas-phase chemical
potentials

Spinney implements, for the common gas species O2, H2, N2, F2, and Cl2, conventient expressions for calculating
the chemical potentials as a function of temperature and pressure. It uses the following formula, based on the Shomate
equation [MWC98] and an ideal gas model:

𝜇(𝑇, 𝑝) = ℎ(0, 𝑝∘) + [𝑔(𝑇, 𝑝∘) − 𝑔(0, 𝑝∘)] + 𝑘𝐵𝑇 ln

(︂
𝑝

𝑝∘

)︂
𝑝∘ represents the standard pressure of 1 bar, 𝑔 the molar free energy and ℎ(0, 𝑝∘) the molar enthalpy at zero temperature
and standard pressure.

For example, consider the case of O2. In this case we would use the class OxygenChemPot class. For each of the
above-mentioned species there is an analogous class whose construct takes two arguments: the unit of energy used to
return 𝜇 and the unit of pressure. Valid units can be found in the variable spinney.constants.available_units:

available_units = ['J', 'eV', 'Ry', 'Hartree', 'kcal/mol', 'kJ/mol',
'm', 'Angstrom', 'Bohr', 'nm', 'cm',
'Pa', 'kPa', 'Atm', 'Torr']

For O2:

from spinney.thermodynamics.chempots import OxygenChemPot

o2 = OxygenChemPot(energy_units='eV', pressure_units='Atm')

We can now use the method get_ideal_gas_chemical_potential_Shomate() to obtain the chemical
potential values as a function of temperature and pressure. The signature of this method is:

get_ideal_gas_chemical_potential_Shomate(mu_standard, partial_pressure, T)

mu_standard is a scalar, representing ℎ(0, 𝑝∘). It can be set equal to the electronic energy calculated for the molecule,
alternatively, in this example we will set it to zero, in such a way we would obtain ∆𝜇𝑂2 , that is the difference from
the reference state.

Both partial_pressure and T can be either scalars or 1-dimensional arrays.

For example, this snippet will plot ∆𝜇𝑂2
as a function of temperature for 𝑝 = 1 Atm.

Note: The Shomate equation is valid only for some values of T, if the input values are not in this range, a ValueError
will be raised. The exception message will indicate the possible temperature range for that gas species.

import numpy as np
import matplotlib.pyplot as plt

(continues on next page)

4.3. Thermodynamic limits for the chemical potentials 43

Spinney, Release ’0.9.a2’

(continued from previous page)

from spinney.thermodynamics.chempots import OxygenChemPot

o2 = OxygenChemPot(energy_units='eV', pressure_units='Atm')

T_range = np.linspace(300, 1000, 200)
chem_pot_vs_T = o2.get_ideal_gas_chemical_potential_Shomate(0, 1, T_range)

plt.plot(T_range, chem_pot_vs_T, linewidth=2)
plt.xlabel('T (K)')
plt.ylabel(r'$\Delta \mu_{O_2}$ (eV)')
plt.show()

And this snippet will plot the same graph but at tree different pressures:

import numpy as np
import matplotlib.pyplot as plt

from spinney.thermodynamics.chempots import OxygenChemPot

o2 = OxygenChemPot(energy_units='eV', pressure_units='Atm')

T_range = np.linspace(300, 1000, 200)
pressures = [1, 10, 1e-6]
chem_pot_vs_T = o2.get_ideal_gas_chemical_potential_Shomate(0, pressures, T_range)

plt.plot(T_range, chem_pot_vs_T, linewidth=2)
plt.legend([str(p) + ' Atm' for p in pressures])
plt.xlabel('T (K)')
plt.ylabel(r'$\Delta \mu_{O_2}$ (eV)')
plt.show()

4.4 Charge Transition Levels

In section Thermodynamic limits for the chemical potentials we have discussed how Spinney can be used for ob-
taining the values of the chemical potentials in given conditions.

The defect formation energy, equation (4.1), depends also on the chemical potential of the electron, usually expressed
as 𝜖𝑉𝑀𝐵 + 𝐸𝐹 .

For this reason, the defect formation energy is often plotted as a function of the Fermi level 𝐸𝐹 . Spinney offers the
class Diagram for this purpose.

Such diagrams are also useful for visualizing the defect thermodynamic charge transition levels, which define the value
of 𝐸𝐹 for which two defect charge states have the same formation energy.

We can take again the defect chemistry of intrinsic GaN as an illustrative example. In particular, the electronic energy
of the intrinsic defects of GaN in several charge states was calculated using a supercell containing 96 atoms and the
PBE exchange-correlation functional using a 4x2x2 reciprocal-point mesh. The formation energies will be calculated
in the Ga-rich limit.

Contents

• Using the class Diagram

44 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

– Step 1: Calculate the Defect Formation Energies

– Step 2: Get Thermodynamic Charge Transition Levels and plot the Diagram

• Using the class DefectiveSystem

4.4.1 Using the class Diagram

Step 1: Calculate the Defect Formation Energies

The easiest way to calculate defect formation energies, including electrostatic finite-size effect corrections, is through
the PointDefect class. Since many defects in several charge states have to be considered, a straightforward way
for processing the DFT data is collecting the results in a proper directory hierarchy. For example, using output from
VASP, if we decide to use the correction scheme of Kumagai and Oba, which only requires the OUTCAR files, the
directory tree might look like this (see also Manage a defective system with the class DefectiveSystem):

data_path
data_defects

Ga_int
0

OUTCAR
position.txt

1
OUTCAR
position.txt

2
OUTCAR
position.txt

3
OUTCAR
position.txt

Ga_N
0

OUTCAR
position.txt

1
OUTCAR
position.txt

-1
OUTCAR
position.txt

2
OUTCAR
position.txt

3
OUTCAR
position.txt

...
Ga

OUTCAR
N2

OUTCAR
pristine

OUTCAR

where the calculations result are collected for each charge state of any specific defect, as well for the pristine system

4.4. Charge Transition Levels 45

Spinney, Release ’0.9.a2’

and parent compounds.

Now the defect formation energy can be calculated for each defect by walking the directory tree. This code snippet
also writes a file containing the formation energies for each defect in each charge state.

import os

import ase.io
from spinney.structures.pointdefect import PointDefect
from spinney.io.vasp import extract_potential_at_core_vasp
from spinney.tools.formulas import count_elements

path_defects = os.path.join('data', 'data_defects')
path_pristine = os.path.join('data', 'pristine', 'OUTCAR')
path_ga = os.path.join('data', 'Ga', 'OUTCAR')

prepare preliminary data
ase_pristine = ase.io.read(path_pristine, format='vasp-out')
pot_pristine = extract_potential_at_core_vasp(path_pristine)
ase_ga = ase.io.read(path_ga, format='vasp-out')

vbm = 5.009256 # valence band maximum pristine system
e_rx = 5.888338 + 4.544304
e_rz = 6.074446 + 5.501630
dielectric tensor
e_r = [[e_rx, 0, 0], [0, e_rx, 0], [0, 0, e_rz]]

store defect positions in dictionary for access convenience
defect_positions = {'Ga_int' : (0.25, 0.55, 0.55),

'N_int' : (0.5, 0.41667, 0.50156),
'Vac_Ga' : (0.5, 0.6666666666, 0.50156),
'Vac_N' : (0.5, 0.3333333333, 0.46045),
'Ga_N' : (0.5, 0.3333333333, 0.46045),
'N_Ga' : (0.5, 0.6666666666, 0.50156)
}

get the chemical potential of Ga
chem_pot_ga = ase_ga.get_total_energy()/ase_ga.get_number_of_atoms()
get the chemical potential of N in the Ga-rich conditions
elements = count_elements(ase_pristine.get_chemical_formula())
chem_pot_n = ase_pristine.get_total_energy() - elements['Ga']*chem_pot_ga
chem_pot_n /= elements['N']

write the formation energy for Fermi level = 0 to a file
energy_file = open('formation_energies_GaN_Ga_rich.txt', 'w')
energy_file.write('#{:<8} {:8} {:>30}\n'.format('system',

'charge',
'formation energy (eV)'))

for root, dirs, files in os.walk(path_defects):
path = root.split(os.sep)
if 'OUTCAR' in files:

def_path = os.path.join(root, 'OUTCAR')
ase_outcar = ase.io.read(def_path)
pot_defective = extract_potential_at_core_vasp(def_path)
defect_name = path[-2]
charge_state = int(path[-1])
print('Processing defect {} in charge state {}'.format(defect_name,

charge_state))

(continues on next page)

46 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

(continued from previous page)

print('Data in: {}'.format(path))
prepare PointDefect object
pdf = PointDefect(ase_outcar)
pdf.set_pristine_system(ase_pristine)
pdf.set_chemical_potential_values({'N':chem_pot_n, 'Ga':chem_pot_ga})
pdf.set_vbm(vbm)
pdf.set_defect_charge(charge_state)
pdf.set_defect_position(defect_positions[defect_name])
pdf.set_dielectric_tensor(e_r)
pdf.set_finite_size_correction_scheme('ko')
pdf.add_correction_scheme_data(potential_pristine=pot_pristine,

potential_defective=pot_defective)
corrected_energy = pdf.get_defect_formation_energy(True)
energy_file.write('{:<8} {:>8} {:30.10f}\n'.format(defect_name,

charge_state,
corrected_energy))

print('Done.\n--')

energy_file.close()

A completely similar approach can be used for WIEN2k or any other first-principle code.

Step 2: Get Thermodynamic Charge Transition Levels and plot the Diagram

The file formation_energies_GaN_Ga_rich.txt, containing the formation energies calculated for each point defect, has
the general format of a text file, with optional headers starting with a #:

description or other comments
defect_name charge_state formation_energy_at_vbm

formation_energy_at_vbm is the calculated value of the formation energy for an electron chemical potential equal to
the valence band maximum, i.e. for 𝐸𝐹 = 0.

Thermodynamic charge transition levels can be easily calculated by initializing a Diagram object.

The class constructor takes two mandatory parameters: a dictionary containing information about point defects for-
mation energies (at 𝐸𝐹 = 0) and their charge state and a 2-ple indicating the system valence band maximum and
conduction band minimum. The latter argument will give the range within which possible transition levels are consid-
ered. Absolute values are intended for 𝜇𝑒 as independent variables; setting the valence band maximum to 0, will give
𝐸𝐹 as independent variable.

The former argument, might be obtained from a file analogous to formation_energies_GaN_Ga_rich.txt using the
function extract_formation_energies_from_file().

The following code snipper will calculate the charge transition levels and print them in the text file transition_levels.txt.

from spinney.defects.diagrams import extract_formation_energies_from_file, Diagram

data_file = 'formation_energies_GaN_Ga_rich.txt'
defect_dictionary = extract_formation_energies_from_file(data_file)
dgm = Diagram(defect_dictionary, (0, 1.713)) # E_F from 0 to PBE band gap value
dgm.write_transition_levels('transition_levels.txt')

The content of transition_levels.txt will be:

4.4. Charge Transition Levels 47

Spinney, Release ’0.9.a2’

#Defect type q/q'
Ga_N 2/3 0.441121

1/2 0.731836
0/1 1.250109

Ga_int 2/3 0.892796
N_Ga 1/2 0.192495

0/1 0.806926
...

Transition level values can also be accessed in a Python session using the attribute transition_levels:

dgm.transition_levels

returns a Pandas Series object with the transition levels.

Extending the band gap

It is well known that standard local and semilocal functionals severely underestimate the band gap of semiconductor
materials. For this purpose the valence band maxima are often aligned to those obtained from more accurate func-
tionals, like hybrids. Transition levels can be calculated in this case by specifying an extended_gap parameter in the
constructor of Diagram.

For example, the paper if reference [LVdW17] finds that the valence band maximum of GaN calculated with HSE with
the 31% of Hartree-Fock exchange lies 0.85 eV below the valence band maximum found by PBE and predicts a band
gap of 3.51 eV.

We can calculate the transition levels in this extended gap by using the following snippet:

Fermi level will range in the HSE range
dgm = Diagram(defect_dictionary, (0, 1.713), (-0.85, - 0.85 + 3.51))
dgm.write_transition_levels('transition_levels_extended.txt')

The file transition_levels_extended.txt will contain also transition levels located outside the PBE gap:

#Defect type q/q'
Ga_N 2/3 0.441121

1/2 0.731836
0/1 1.250109
-1/0 1.825432

Ga_int 2/3 0.892796
1/2 2.008318
0/1 2.374206

...

A plot is very useful to visualize these results. The following snippet shows how to make the plot with Spinney.

from spinney.defects.diagrams import extract_formation_energies_from_file, Diagram

data_file = 'formation_energies_GaN_Ga_rich.txt'
defect_dictionary = extract_formation_energies_from_file(data_file)

dgm = Diagram(defect_dictionary, (0, 1.713), (-0.85, - 0.85 + 3.51))
use some prettier labels in the plot
dgm.labels = {'Ga_int' : r'Ga_i',

'N_int' : r'N_i',
'Vac_Ga' : r'Vac_{Ga}',

(continues on next page)

48 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

(continued from previous page)

'Vac_N' : r'Vac_N',
'Ga_N' : r'Ga_N',
'N_Ga' : r'N_{Ga}'}

personalize colors to use in the plot
colors = {'Ga_int' : 'red',

'N_int' : 'blue',
'Vac_Ga' : 'orange',
'Vac_N' : 'gray',
'Ga_N' : 'magenta',
'N_Ga' : 'green'}

save the plot
dgm.plot(save_flag=True, save_title='diagram',

title='Intrinsic GaN, Ga-rich conditions', legend=True,
colors_dict=colors, x_label=r'E_F (eV)')

This code will save the file diagram.pdf with the plot:

4.4.2 Using the class DefectiveSystem

The directories structure used in the previous section is compatible with the one required by an instance of
DefectiveSystem.

Such object has a Diagram instance accessible through the attribute diagram. In order to create this Diagram
object, one needs to specify the parameters gap_range and eventually extended_gap_range needed by
Diagram. These values can be added using the attributes gap_range and extended_gap_range of a
DefectiveSystem.

For example, suppose that a DefectiveSystem instance as been initialized as defective_system (see Manage
a defective system with the class DefectiveSystem). Then for our example, one can type:

defective_system.gap_range = (0, 1.713)
defective_system.extended_gap_range = (-0.85, - 0.85 + 3.51)
dgm = defective_system.diagram

dgm is an initialized Diagram object, which we can use as shown in the previous sections.

4.5 Equilibrium defect concentrations in the dilute limit

The formation energy ∆𝐸𝑓 (𝑑; 𝑞) of a point defect d in charge state q is given by equation (4.1). In the dilute limit,
one assumes non-interacting defects. In this case, the energy required for forming 𝑛 defects of type d in charge state
q is simply 𝑛∆𝐸𝑓 (𝑑; 𝑞) = ∆𝐸𝑓 (𝑛𝑑; 𝑞).

At the thermodynamic equilibrium the system grand potential, Φ, is in a minimum:

Φ(𝑛𝑑; 𝑞) = Φ(bulk) + ∆𝐸𝑓 (𝑛𝑑; 𝑞) + 𝑇𝑆𝑐𝑜𝑛𝑓 (𝑛) (4.4)

where 𝑆𝑐𝑜𝑛𝑓 is the contribution of the configurational entropy to the grand potential of the defective system. Let
𝑥 ≡ (𝑑, 𝑞) and assume that there are 𝑔𝑥 possible configurations in which defect x has the same ∆𝐸𝑓 (𝑑; 𝑞) (for example
given by spin degeneracy). If the crystal is made of 𝑁 unit cell and in each cell there are 𝛾𝑥 equivalent sites that defect
x can occupy, the number of possible ways to place 𝑛 non-interacting defects on 𝑁𝛾𝑥 sites is (for 𝑛 ≪ 𝑁𝛾𝑥):

Ω𝑥 = 𝑔𝑛𝑥

(︂
𝑁𝛾𝑥
𝑛

)︂
(4.5)

4.5. Equilibrium defect concentrations in the dilute limit 49

Spinney, Release ’0.9.a2’

0.5 0.0 0.5 1.0 1.5 2.0 2.5
EF (eV)

0

2

4

6

8

E f
 (e

V)

NGa

Gai

GaN

Ni

VacN

VacGa

Intrinsic GaN, Ga-rich conditions

50 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

from which one gets: 𝑆𝑐𝑜𝑛𝑓 = 𝑘𝐵 ln Ω𝑥. The equilibrium defect concentration follows from taking the derivative of
(4.4) with respect to 𝑛 using Stirling’s approximation for expressing 𝑆𝑐𝑜𝑛𝑓 . One gets:

𝑐𝑥 =
𝑛

𝑁
=

𝛾𝑥𝑔𝑥

exp
(︁

Δ𝐸𝑓 (𝑑;𝑞)
𝑘𝐵𝑇

)︁
+ 𝑔𝑥

(4.6)

Usually ∆𝐸𝑓 (𝑑; 𝑞) ≫ 𝑘𝐵𝑇 and equation (4.6) is approximated by:

𝑐𝑥 = 𝑔𝑥𝛾𝑥 exp

(︂
−∆𝐸𝑓 (𝑑; 𝑞)

𝑘𝐵𝑇

)︂
In case of more than one type of defect in the crystal, the equilibrium concentration of each defect is given by formula
(4.6), assuming the dilute-limit holds.

Thermodynamic limits for the chemical potentials explained how Spinney can help in determining the equilibrium
values of the atomic chemical potentils in different thermodynamic conditions. The only chemical potential that needs
to be determined is the chemical potential of the electron, whose value is fixed by the charge-neutrality constraint:∑︁

𝑥

𝑞𝑐𝑥(𝜇𝑒) + 𝑝0(𝜇𝑒) − 𝑛0(𝜇𝑒) = 0 (4.7)

where 𝑛0 is the concentration of free electrons:

𝑛0 =

∫︁ ∞

𝜖𝐶

𝜔(𝜖)

𝑒(𝜖−𝜇𝑒)/𝑘𝐵𝑇 + 1
𝑑𝜖,

and 𝑝0 is the concentration of free holes:

𝑝0 =

∫︁ 𝜖𝑉

−∞

𝜔(𝜖)

𝑒(𝜇𝑒−𝜖)/𝑘𝐵𝑇 + 1
𝑑𝜖.

𝜔(𝜖) is the density of Kohn-Sham states.

Spinney can find 𝜇𝑒 by finding the roots of equation (4.7) from data provided by the user and obtain the equilibrium
defect concentrations.

4.5.1 Calculate equilibrium defect concentrations with Spinney

Spinney implements the EquilibriumConcentrations for calculating equilibrium defect concentrations.

The mandatory arguments for initializing a new instance are:

• charge_states: a dictionary mapping each studied defect with the considered charge states.

• form_energy_vbm: a dictionary mapping each studied defect with the formation energies calculated at the
valence band maximum for each charge state in charge_states.

• vbm: the value of the valence band maximum used in calculating the defect formation energies recorded in
form_energy_vbm.

• e_gap: the calculated band gap.

• site_conc: a dictionary mapping each studied defect with the concentration of available defect sites per unit
cell (𝛾𝑥 of equation (4.5)). In addition, it maps the concentrations of free holes and electrons. In this case the
dictionary keys are hole and electron, respectively.

• dos: a 2D array. The first column reports the energies of the one-electron levels sorted in ascending order;
the second column reports the corresponding density of states per simulation cell. The value in dos must be
consistent with the values of vbm and e_gap.

4.5. Equilibrium defect concentrations in the dilute limit 51

Spinney, Release ’0.9.a2’

• T_range: a 1D array with the temperatures to be used to calculate the defect concentration.

Optional arguments are:

• g: a dictionary mapping each studied defect with its degeneracy for each charge state in charge_states.

• N_eff: a number indicating an effective doping concentration. Its value will affect the calculated value of the
equilibrium electron chemical potential using the equation:

∑︁
𝑥

𝑞𝑐𝑥(𝜇𝑒) + 𝑝0(𝜇𝑒) − 𝑛0(𝜇𝑒) = 𝑁𝑒𝑓𝑓

• units_energy: the units of energy that are used, by default eV are used.

• dos_down: for spin-polarized systems, the DOS of spin-down electrons. Data structure completely analogous
to dos.

We will use as an example the intrinsic defects in GaN, considered also in Manage a defective system with the class
DefectiveSystem and in Charge Transition Levels.

charge_states = {'N_Ga' : [-1, 0, 1, 2, 3],
'Ga_int' : [0, 1, 2, 3],
'Ga_N' : [-1, 0, 1, 2, 3],
...

}

form_energy_vbm = {'N_Ga' : [11.0872728320, 8.2717122490, ...],
'Ga_int' : [8.3391662537, 5.1149599825, ...],
'Ga_N' : [8.1902691783, 5.5148367310, ...],
...

}

Indicating, for example, that the formation energy, for an electron chemical potential equal to the valence band max-
imum, of a Ga interstitials in charge state +1 is 5.1149599825 eV. The names used to indicate the various type
of point defects must be consistent with each other. Such data structures can be easily obtained from the text file
produced by DefectiveSystem using the method write_formation_energies(), which have the format
shown in Step 2: Get Thermodynamic Charge Transition Levels and plot the Diagram.

So as a first step, one calculates the defect formation energies for the various point defects of interest, for example
using a DefectiveSystem object. As done in previous section we consider in this example the Ga-rich limit:

import os

import ase.io
from spinney.structures.defectivesystem import DefectiveSystem
from spinney.tools.formulas import count_elements

path_defects = os.path.join('data', 'data_defects')
path_pristine = os.path.join('data', 'pristine', 'OUTCAR')
path_ga = os.path.join('data', 'Ga', 'OUTCAR')

ase_ga = ase.io.read(path_ga, format='vasp-out')

Band alignment
vbm_offset = 0.85
vbm = 5.009256 - vbm_offset # align the VBM with the HSE band
e_gap = 1.713
dielectric tensor

(continues on next page)

52 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

(continued from previous page)

e_rx = 5.888338 + 4.544304
e_rz = 6.074446 + 5.501630
e_r = [[e_rx, 0, 0], [0, e_rx, 0], [0, 0, e_rz]]

get the chemical potential of Ga
ase_pristine = ase.io.read(path_pristine, format='vasp-out')
chem_pot_ga = ase_ga.get_total_energy()/ase_ga.get_number_of_atoms()
get the chemical potential of N in the Ga-rich conditions
elements = count_elements(ase_pristine.get_chemical_formula())
chem_pot_n = ase_pristine.get_total_energy() - elements['Ga']*chem_pot_ga
chem_pot_n /= elements['N']

initialize a DefectiveSystem
defective_system = DefectiveSystem('data', 'vasp')
defective_system.vbm = vbm
defective_system.dielectric_tensor = e_r
defective_system.chemical_potentials = {'Ga':chem_pot_ga, 'N':chem_pot_n}
defective_system.correction_scheme = 'ko'
defective_system.calculate_energies(verbose=False)
write the defect formation energies in a text file
defective_system.write_formation_energies('formation_energies_GaN_Ga_rich.txt')

Note that in:

Band alignment
vbm_offset = 0.85
vbm = 5.009256 - vbm_offset # align the VBM with the HSE band
e_gap = 1.713

we have lowered the PBE valence band maximum by 0.85 eV in order to align it with the valence band value obtained
using a hybrid functional (see Charge Transition Levels). This will lower the formation energies of positive charge
states by 𝑞 × 0.85 and increase those of negative states by |𝑞| × 0.85. So aligning the valence band maximum will
have considerable effects on the defect formation energies.

charge_states and form_energy_vbm can be obtained from the text file forma-
tion_energies_GaN_Ga_rich.txt calling the function extract_formation_energies_from_file() in
the module concentration. The function takes as the only argument the text file with the defect formation
energies and returns the dictionaries to be used as the parameters charge_states and form_energy_vbm of
EquilibriumConcentrations:

from spinney.defects.concentration import extract_formation_energies_from_file

energy_file = 'formation_energies_GaN_Ga_rich.txt'
charge_states, form_energy_vbm = extract_formation_energies_from_file(energy_file)

We can now process the rest of the data:

• vbm will be equal to the shifted valence band maximum: vbm = 5.009256 - vbm_offset.

Warning: vbm is the valence band maximum of the unit cell used to calculate dos. In GaN, the
valence band maximum is located at the Γ point and the valence band eigenvalues of the primitive and
pristine supercell are basically the same. For other materials, the values could differ. It is important
that vbm and dos are always consistent with each other.

• e_gap is directly obtained from the output of first-principles calculations. Here we use the value predicted by
PBE for the primitive cell.

4.5. Equilibrium defect concentrations in the dilute limit 53

Spinney, Release ’0.9.a2’

• site_conc can be determined for example by looking at the multiplicities of the Wyckoff position of the site
where the point defect sits. In the wurtzite structure, the Wyckoff position for both Ga and N is (2𝑏). Considering
the primitive cell as reference cell, one would have:

site_conc = {'Ga_N':4, 'N_Ga':4, 'Vac_N':4, 'Vac_Ga':4,
'Ga_int':6, 'N_int':6, 'electron':36 , 'hole':36}

the site symmetry of the interstitial atoms is compatible with the (6𝑐) Wyckoff position. For electron and
holes we used the number of valence electrons per primitive cell. Using such site_conc in initializing
EquilibriumConcentrations would make the code calculate defect concentrations per primitive
cell. One usually reports defect concentrations in 𝑐𝑚−3. So, for GaN, whose equilibrium volume at the
PBE level is 47.04 3, one needs to multiply the values in site_conc by 2.126e+22 in order to obtain
concentrations in 𝑐𝑚−3.

• dos can be straightforwardly obtained from the first-principles calculations. However, in our example we need
to modify it. For one, we have to shift the valence band maximum in the first column of dos by -0.85 eV, so
that it agrees with vbm. If dos has been read and stored to a 2D numpy array, such operation is trivial:

dos[:, 0] -= vbm_offset

• T_range can be chosen to be any array of interest. We can calculate defect concentrations from 250 K to 1000
K taking 100 sampling points:

T_range = np.linspace(250, 1000, 100)

A instance of EquilibriumConcentrations can now be initialized:

concentrations = EquilibriumConcentrations(charge_states, form_energy_vbm,
vbm, e_gap, site_conc, dos, T_range)

Equilibrium properties of the system can now be calculated an accessed through the instance attributes:

• concentrations.equilibrium_fermi_level: returns a Numpy array with len(T_range) ele-
ments, with the calculated equilibrium value of the electron chemical potential as a function of the input tem-
perature. concentrations.equilibrium_fermi_level - concentrations.vbm can be used
to obtain the Fermi level with respect to the valence band maximum.

The picture shows that intrinsic GaN is a n-type semiconductor and that the carrier concentration will
increase as the temperature increases.

• concentrations.equilibrium_carrier_concentrations returns a Numpy array with the equi-
librium carrier concentrations as a function of the temperature. The quantity returned is the difference
between hole and electron concentrations. For intrinsic GaN the signs are negative, indicating that elec-
trons are indeed the majority carriers. The plot below shows the absolute value of concentrations.
equilibrium_carrier_concentrations as a function of 1000/𝑇 . Note that the electron concen-
tration will be largely overestimated as we have used the PBE band gap, which is much smaller than the exper-
imental one. Opening the gap, e. g. by applying a scissor operator, might change the calculated concentrations
by order of magnitudes.

• concentrations.equilibrium_defect_concentrations returns a dictionary, where each key is
the name of the point defect, as used in charge_states and form_energy_vbm. The values are other dic-
tionaries, where the keys are the defect charge state and the value a Numpy array with the defect concentrations
as a function of the temperature.

For example, the equilibrium defect concentrations of nitrogen vacancies, which we indi-
cated using Vac_N, in the charge state +2 can be obtained from: concentrations.
equilibrium_defect_concentrations['Vac_N'][2].

54 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

4.5. Equilibrium defect concentrations in the dilute limit 55

Spinney, Release ’0.9.a2’

The picture shows that the majority carriers originate from the ionization of donor-type N vacancies,
which have a low formation energy, as shown in Fig. ?? of section Charge Transition Levels.

For convenience and for allowing further processing of defect concentrations, an
EquilibriumConcentrations instance also collects the data in a Pandas DataFrame ob-
ject, accesible through the attribute defect_concentrations_dataframe.

df = concentrations.defect_concentrations_dataframe
the temperature is used for the row labels
df.loc[500] # Panda Series with formation energies at 500K

Equilibrium concentrations for free electrons and holes as a function of the temperature
can be accessed through the attributes equilibrium_electron_concentrations and
equilibrium_holes_concentrations, respectively. A Pandas DataFrame with the equilib-
rium carrier concentrations is given by the attribute carrier_concentrations_dataframe.

carriers_df = concentrations.carrier_concentrations_dataframe
merge data frames for further processing
import pandas as pd
new_df = pd.concat([df, carriers_df], axis=1)
show that free electron are almost entirely generated by single ionization
→˓of Vac_N
data = new_df.loc[:, [('Vac_N', 1), 'electron']].values
plt.plot(T_range, (data[:, 1] - data[:, 0])/data[:, 1])
plt.show()

Through this last snippet, the curve reproduced in the below image is obtained, which shows that more
than 99% of free electrons are due to the single ionization of nitrogen vacancies.

56 Chapter 4. Tutorial

Spinney, Release ’0.9.a2’

4.5.2 Using the class DefectiveSystem

Using the usual directory structure we can prepare an DefectiveSystem instance and access an
EquilibriumConcentrations object from it.

The following code snippet will prepare an instance of the class DefectiveSystem, calculate the de-
fect formation energies in the Ga-rich limit and produce an EquilibriumConcentrations instance,
which can be accessed through the attribute concentrations of the DefectiveSystem instance. Such
EquilibriumConcentrations instance can be used as shown in the previous section to obtain equilibrium
defect and carriers concentrations as a function of the temperature.

import numpy as np
import os
import ase.io
from spinney.structures.defectivesystem import DefectiveSystem
from spinney.tools.formulas import count_elements
from spinney.io.vasp import extract_dos

path_defects = os.path.join('data', 'data_defects')
path_pristine = os.path.join('data', 'pristine', 'OUTCAR')
path_ga = os.path.join('data', 'Ga', 'OUTCAR')

ase_ga = ase.io.read(path_ga, format='vasp-out')

Band alignment
vbm_offset = 0.85
vbm = 5.009256 - vbm_offset # align the VBM with the HSE band
e_gap = 1.713

(continues on next page)

4.5. Equilibrium defect concentrations in the dilute limit 57

Spinney, Release ’0.9.a2’

(continued from previous page)

dielectric tensor
e_rx = 5.888338 + 4.544304
e_rz = 6.074446 + 5.501630
e_r = [[e_rx, 0, 0], [0, e_rx, 0], [0, 0, e_rz]]

get the chemical potential of Ga
ase_pristine = ase.io.read(path_pristine, format='vasp-out')
chem_pot_ga = ase_ga.get_total_energy()/ase_ga.get_number_of_atoms()
get the chemical potential of N in the Ga-rich conditions
elements = count_elements(ase_pristine.get_chemical_formula())
chem_pot_n = ase_pristine.get_total_energy() - elements['Ga']*chem_pot_ga
chem_pot_n /= elements['N']

get the density of states
dos = extract_dos('vasprun.xml')[0]
dos [:,0] -= vbm_offset

site concentrations for point defects
volume = ase_pristine.get_volume()/ase_pristine.get_number_of_atoms()
volume *= 4
factor = 1e-8**3 * volume
factor = 1/factor
site_conc = {'Ga_N':4, 'N_Ga':4, 'Vac_N':4, 'Vac_Ga':4,

'Ga_int':6, 'N_int':6, 'electron':36 , 'hole':36}
site_conc = {key:value*factor for key, value in site_conc.items()}

defective_system = DefectiveSystem(os.path.join('..', 'diagram', 'data'),
'vasp')

defective_system.vbm = vbm
defective_system.dielectric_tensor = e_r
defective_system.chemical_potentials = {'Ga':chem_pot_ga, 'N':chem_pot_n}
defective_system.correction_scheme = 'ko'
specific data for obtaining the EquilibriumDefectConcentration object
defective_system.gap_range = (vbm, vbm + e_gap)
defective_system.site_concentrations = site_conc
defective_system.temperature_range = np.linspace(250, 1000, 100)
defective_system.dos = dos
defective_system.calculate_energies(False)

EquilibriumDefectConcentrations object
concentrations = defective_system.concentrations

58 Chapter 4. Tutorial

CHAPTER

FIVE

RELEASE NOTES

5.1 Version 0.9.a1

16 October 2020:

• Updated contacts emails.

5.2 Version 0.9.a1

21 July 2020:

• The package is now compatible also with Windows 10.

5.3 Version 0.9.a0

25 June 2020:

• Fixed some small bugs that gave problem in plotting the feasible region with newer versions of scipy.

5.4 Version 0.8.a3

27 February 2020:

• Added some internal helper functions.

• Fixed the sorting in the pandas series used for storing charge transition levels.

5.5 Version 0.8.a2

20 January 2020:

• Improved the method for plotting the intersection of the feasible region with the plane defined by constant
chemical potentials.

• Added a complete case study in the tutorial.

• Small bug fixes.

59

Spinney, Release ’0.9.a2’

5.6 Version 0.8.a1

7 January 2020:

• The class DefectiveSystem can be used for obtaining equilibrium defect concentrations.

5.7 Version 0.8.a0

18 December 2019:

• Added compatibility with ASE version >= 3.18.0.

• Added the class DefectiveSystem to manage defect formation energy calculations for a system with differ-
ent point defects.

5.8 Version 0.7.a5

19 November 2019:

• First version released to the public.

60 Chapter 5. Release Notes

CHAPTER

SIX

API REFERENCE

Spinney: A Python package for first-principles Point Defect calculations.

Spinney is a collection of Python modules aimed for the analysis and postprocessing of first-principles calculations of
point defects in solids.

Spinney can assists with the major tasks necessary for the characterization of point defects in solids. The classes and
functions that it implements can be divided into the following groups, which are related to the several steps necessary
for processing the ab-initio calculations:

• General high-level interface for point-defect calculations

spinney.structures.pointdefect Contains the PointDefect class which offers a conve-
nient interface to calculate the properties of a point defect, such as its formation energy including
finite-size corrections.

• Determination of the possible values of equilibrium chemical potentials

spinney.thermodynamics.chempots Contains the Range class which is able to determine the
possible equilibrium values of the chemical potentials given a set of competing phases.

It also contains classes describing the chemical potentials of common gas phases, such as O2, H2,
N2, Cl2 and F2, as a function of temperature and pressure employing experimental data and empirical
formulas.

• Correction schemes for electrostatic finite-size effects in supercells

– spinney.defects.kumagai Implements the correction scheme proposed by Kumagai and Oba
in Phys. Rev. B 89, 195205 (2014)

– spinney.defects.fnv Implements the correction scheme proposed by Freysoldt, Neugebauer
and Van de Walle in Phys. Rev. Lett. 102, 016402 (2009)

• Calculation of equilibrium defect properties

– spinney.defects.diagrams Contains the spinney.defects.diagrams.Diagram
class which allows to plot the defect formation energies as a function of the Fermi level and
calculate charge transition levels.

– spinney.defects.concentration Contains the spinney.defects.
concentration.EquilibriumConcentration class that allows to calculate equi-
librium properties, such as defects and carriers concentrations and the Fermi level position.

• General-purpose tools

– spinney.tools.formulas Contains some helper functions useful for dealing with chemical
formulas.

– spinney.tools.reactions Contains helper functions useful for calculating reaction energies.

61

Spinney, Release ’0.9.a2’

• Support for first-principles codes The Spinney package currently offers interfaces for these computer codes:

– VASP: spinney.io.vasp

– WIEN2k: spinney.io.wien2k

6.1 General high-level interface for point-defect calculations

• spinney.structures.pointdefect

• spinney.structures.defectivesystem

6.1.1 The pointdefect module

Module implementing a PointDefect class to store and process information concerning a system with point defects.

class spinney.structures.pointdefect.DummyAseCalculator(atoms)
Dummy calculator to be used when the calculations are done with a code not supported by ase. Use this dummy
calculator only to pass custom Atoms objects to the PointDefect class. Any other use of ought to be avoided.

Parameters atoms (ase.Atoms) – the Atoms instance to be used with a PointDefect in-
stance

class spinney.structures.pointdefect.PointDefect(ase_atoms)
PointDefect class.

It represents a 3D-periodic system containing one or more point defects.

Parameters ase_atoms (instance of ase.Atoms) – the Atoms object created from a completed
point defect calculation.

Note: it is assumed that all the Atoms object have units of Angstrom for lengths and eV for
energies. This is the default in ase.

my_name
an alphanumeric label for the instance

Type string, optional

defect_position
the scaled positions of the defect in the supercell

Type 1D numpy array

defect_charge
the charge state of the defect

Type float

pristine_system
the ase.Atoms describing the pristine system

Type ase.Atoms instance

parent_compounds
the keys are: pristine, chemical_formula1, . . . the value associated to pristine is the
ase.Atoms instance representing the pristine system. chemical_formula1 etc. are the chemi-
cal formulas of the other compounds involved in the creation of the point defect. These are added us-
ing set_parent_elements(). Their values are the ase.Atoms instances representing these com-
pounds.

62 Chapter 6. API reference

https://www.vasp.at/
http://www.wien2k.at/

Spinney, Release ’0.9.a2’

Excluding the pristine system, these data are not necessary, but can be used to test the chemical potential
values to be used in the calculation of the defect formation energy.

For example, for an Oxygen vacancy in MgO, the keys of parent_compounds would be: ‘pristine’,
‘O2’, ‘Mg2’, which means the ase Atoms object for ‘Mg2’ contains 2 Mg atoms; i.e. it is the primitive
HCP cell.

Type dict

parent_elements
each element is an instance of an ase.Atoms object representing the compound describing the standard
state of the elements involved in the defective system.

For example, for an Oxygen vacancy in MgO, these would be the ase.Atoms instances for ‘O2’ and
‘Mg2’

Type dict, optional

Examples

To initialize a PointDefect instance, it is only necessary to have an initialized ase.Atoms object with
attached a calculator that supports the Atoms.get_total_energy() method.

Suppose that the output, obtained by a first-principle code, describing a defective system is saved in the file
output.fmt. And that format fmt can be read by ase.io.read(). Then the following snippet can be
used to initialize a PointDefect object representing the defective system.

>>> import ase.io
>>> defect = ase.io.read('output.fmt')
>>> pdf = PointDefect(defect)

add_correction_scheme_data(**kwargs)
Add the extra data needed in order to calculate the defect formation energy with the choosen scheme

Parameters kwargs (dict) –

• For the correction schemes ‘ko’ and ‘fnv’:

keys: potential_pristine, potential_defective

the values are numpy arrays.

– for ‘ko’:

the arrays have to contain the value of the electrostatic potential at the ionic
sites. The order has to be the same of the one used in the ase.Atoms ob-
jects employed in the initialization of the PointDefect instance and employed in
set_pristine_system()

– for ‘fnv’:

the arrays have to contain the electrostatic potential on a 3D grid. The file has to match
the supercell used to initialize the PointDefect instance.

• For ‘fnv’:

axis the unit cell axis along which the electrostatic potential will be averaged.

defect_density (optional) a 3D array with the charge density that can be used to
model the defect-induced one. This will be used to fit the model charge to the defect-
induced charge density.

6.1. General high-level interface for point-defect calculations 63

Spinney, Release ’0.9.a2’

x_comb (optional) a float between 0 and 1. Weight of the exponential function with
respect to the Gaussian function in modeling the defect-induced charge density. Default
x_comb = 0: the charge density is a pure Gaussian.

gamma (optional) a float. The parameter of the exponential function. Default value is 1.

beta (optional) a float. The parameter of the Gaussian function. Default value is 1.

shift_tol (optional) a float representing the tolerance to be used in order to locate the
defect position along axis. Default value: 1𝑒− 5 × lengthcellparameterofaxis

e_tol (optional) a float, break condition for the iterative calculation of the correction
energy. Value in Hartree. Default: 1e-6 Ha.

• For ko:

distance_tol (optional) rounding tolerance for comparing distances, in units of
Angstrom. Default value is 5e-2 Angstroms.

e_tol (optional) a float, break condition for the iterative calculation of the correction
energy. Value in eV. Default: 1e-6 eV.

calculate_finite_size_correction(verbose=False)
Calculate the energy correction for finite-size effects employing the method chosen with
set_finite_size_correction_scheme.

Parameters verbose (bool) – If True, several details are returned as a dictionary. If False,
only the correction energy is returned. This has to be added to the energy of the defective
system.

get_defect_formation_energy(include_corr=False)
Returns the formation energy of the defective system.

Parameters include_corr (bool) – If True, the formation energy is already corrected for
finite-size effects.

Returns energy – the defect formation energy

Return type float

set_Eg(value)

Parameters value (float) – The system band gap value.

set_chemical_potential_ranges(ranges)
For each element involved in the creation of the defective system, specify the minimum and maximum
value that the chemical potential can have.

If set_parent_elements() was used, it will be checked that the input elements are the same.

Parameters ranges (dictionary of 2-ples) – For each element involved in the cre-
ation of the point defect, an element of ranges[element] is the 2-ple:

(minimum value atomic chemical potential, maximum value atomic chemical potential)

With ‘atomic chemical potential’ it is intended that the values are referred to a single atom,
and not to the formula unit of the corresponding element used in parent_elements

set_chemical_potential_values(chem_pots, force=False)
Set the chemical potential values, for each species involved in forming the defective system, to be used in
the calculation of the defect formation energy.

If these are not set, an exception will be raised. If chemical_potential_ranges is not None,
it will be checked if the given chemical potentials are within these ranges; if not, an exception will be

64 Chapter 6. API reference

Spinney, Release ’0.9.a2’

raised. In any case, the given chemical potential values will be tested againts the parent elements chemical
potentials, if these are given. Use force=True to bypass these checks.

Parameters

• chem_pots (dict of floats) – each element is the chemical potential of one ele-
ment (value give per atom) The keys must be the same used in self.parent_elements, if the
parent elements were set.

• force (bool) – If True, the inserted values will be used for the calculations, even tough
they are not physical valid values

set_defect_charge(charge)

Parameters charge (float) – The formal charge assigned to the point defect. It is assumed
that only one localized charge is present in the supercell.

set_defect_position(position)
Set the fractional coordinates of the point defects in the system.

Parameters position (1D array) – the scaled position of the point defect with respect to
self.get_cell()

set_dielectric_tensor(value)

Parameters value (2D array or float) – The value of the system dielectric tensor (or
constant).

set_fermi_level_value_from_vbm(value)
Set the value of the Fermi level with respect to the system valence band maximum.

This value will be used to calculate the defect formation energy of charged defects.

Parameters value (float) –

set_finite_size_correction_scheme(scheme)
Set the correction scheme for finite-size effects in point defect calculations.

Parameters scheme (string) – The correction scheme to use. Possible values:

• ’ko’ : Kumagai and Oba, PRB 89, 195205 (2014)

• ’fnv’: Freysoldt, Neugebauer, and Van de Walle, Phys. Rev. Lett. 102, 016402 (2009)

set_parent_elements(elements)
Set the ase.Atoms objects representing the compounds, in their reference state, for the elements involved
in the formation of the point defects.

Parameters elements (list or tuple) – each element of the sequence is an Atoms ob-
ject. For example, if the defective system consists of the C vacancy- N_C complex in dia-
mond, then: elements = (ase.Atoms for C (e.g. C diamond), ase.Atoms for N2)

set_pristine_system(ase_pristine)

Parameters ase_pristine (ase.Atoms) – The ase.Atoms object representing the pris-
tine system.

set_vbm(value)

Parameters value (float) – The system valence band maximum, which determines the min-
imum value of the electron chemical potential.

6.1. General high-level interface for point-defect calculations 65

Spinney, Release ’0.9.a2’

6.1.2 The defectivesystem module

class spinney.structures.defectivesystem.DefectiveSystem(data_path, calculator)
Container class describing a system with point defects.

Parameters

• data_path (string) – path to the folder containing the results of the point defect cal-
culations. It is expected a directory tree like this:

"data_path"
data_defects

"defect_name"
"charge_state"

"files"
"charge_state"

"files"
"charge_state"

"files"
"charge_state"

"files"
"defect_name"

...
pristine

"files"

– defect_name is a string describing the point defect.

– charge_state must be the charge state of the considered defect.

– files are the data needed for calculating defect formation energies. These depends on the
calculator in use:

– VASP: at least there should be the OUTCAR file.

– WIEN2k: at least there should be the case.struct and case.scf files.

For all calculators a file named position.txt containing the fractional coordinates of the de-
fective site must be present.

• calculator (string) – the code used to calculate the data

vbm
the valence band maximum of the host material

Type float

dielectric_tensor
the dielectric tensor of the host material

Type float or 2D array

chemical_potentials
a dictionary whose keys are the parent elements forming the defective system and whose values are the
chemical potentials to be used in the calculation of the defect formation energy

Type dict

correction_scheme
specifies the correction scheme for finite-size-effects to be used

Type str

66 Chapter 6. API reference

Spinney, Release ’0.9.a2’

data
collects the calculated formation energies for each processed point defect

Type pandas DataFrame object

point_defects
a list of PointDefect objects corresponding to the processed point defects

Type list

gap_range
a tuple containing the valence band maximum and conduction band minimum of the pristine system

Type tuple

extended_gap_range
a tuple containing the valence band maximum and conduction band minimum for an extetnded band gap
of the pristine system. Used to initialize a Spinney Diagram object

Type tuple

diagram
an object representing the defect formation energies as a function of the electron chemical potential

Type Spinney Diagram object

calculate_energies(verbose=True)
Calculate defect formation energies :param verbose: if True, information about the process is printed :type
verbose: bool

property defects_degeneracy_numbers
A dictionary o Represents the degeneracy for each type of defect in each of its charge states. The order
has to match that of charge_states[defect_type].

write_formation_energies(out_file)
Write the defect formation energies to a file in a format used by Spynney.

Parameters out_file (str) – name of the file used to write the energies

6.2 Determination of the possible values of equilibrium chemical po-
tentials

• spinney.thermodynamics.chempots

6.2.1 The chempots module

Module with general tools and classes for handling chemical potential-related quantities.

The Range class allows to calculate valid chemical potential values given competing phases.

class spinney.thermodynamics.chempots.ChlorineChemPot(energy_units='eV', pres-
sure_units='Pa')

Class for modelling the chemical potential of the Cl2 gas molecule

Parameters

• energy_units (string) – the units to be used for the energy

• pressure_units (string) – the units to be used for the pressure

6.2. Determination of the possible values of equilibrium chemical potentials 67

Spinney, Release ’0.9.a2’

class spinney.thermodynamics.chempots.FluorineChemPot(energy_units='eV', pres-
sure_units='Pa')

Class for modelling the chemical potential of the F2 gas molecule

Parameters

• energy_units (string) – the units to be used for the energy

• pressure_units (string) – the units to be used for the pressure

class spinney.thermodynamics.chempots.HydrogenChemPot(energy_units='eV', pres-
sure_units='Pa')

Class for modelling the chemical potential of the H2 gas molecule

Parameters

• energy_units (string) – the units to be used for the energy

• pressure_units (string) – the units to be used for the pressure

class spinney.thermodynamics.chempots.IdealGasChemPot(energy_units='eV', pres-
sure_units='Pa')

Class for modelling the chemical potential of an ideal gas molecule

Parameters

• energy_units (string) – the units to be used for the energy

• pressure_units (string) – the units to be used for the pressure

G_diff_Shomate_Eq(T)
Calculate the standard Gibbs free energy at temperature T with respect to the standard one at 0 K using
Shomate equation.

Parameters T (float) – the temperature

Returns gibbs_energy – the standard Gibbs free energy at T in the units of self.
energy_units

Return type float

get_ideal_gas_chemical_potential_Shomate(mu_standard, partial_pressure, T)
Given the standard chemical potential at 0K, e.g. calculated with DFT, returns the value at given tempera-
ture obtained using the Shomate equation and the ideal gas formulas.

𝜇(𝑇, 𝑝) = ℎ(0, 𝑝∘) + [𝑔(𝑇, 𝑝∘) − 𝑔(0, 𝑝∘)] + 𝑘𝐵𝑇 ln

(︂
𝑝

𝑝∘

)︂
Parameters

• mu_standard (float) – standard-state chemical potential of the molecule at 0K

• partial_pressure (array or float) – the partial pressure

• T (array or float) – the gas temperature

Returns

chem_pot – The chemical potentials as a 2D numpy array of shape (len(T),
len(partial_pressure)) if both T and partial_pressure are arrays; otherwise a 1D numpy ar-
ray of length len(partial_pressure)

if partial_pressure is an array and T a float; otherwise a 2D array of shape (len(T), 1) if
partial_pressure is a float and T an array; finally if both T and partial_pressure are float, the
result is a float

Return type numpy array/float

68 Chapter 6. API reference

Spinney, Release ’0.9.a2’

class spinney.thermodynamics.chempots.NitrogenChemPot(energy_units='eV', pres-
sure_units='Pa')

Class for modelling the chemical potential of the N2 gas molecule

Parameters

• energy_units (string) – the units to be used for the energy

• pressure_units (string) – the units to be used for the pressure

class spinney.thermodynamics.chempots.OxygenChemPot(energy_units='eV', pres-
sure_units='Pa')

Class for modelling the chemical potential of the O2 gas molecule

Parameters

• energy_units (string) – the units to be used for the energy

• pressure_units (string) – the units to be used for the pressure

class spinney.thermodynamics.chempots.Range(coeff_equalities, const_equalities, co-
eff_inequalities, const_inequalities, bounds)

Class for finding the allowed ranges for the chemical potentials of given elements given the competing phases.

Parameters

• coeff_equalities (2D tuples) – the coefficients of the linear equalities. For each
equality there should be an array with the corresponding coefficients. Each element in the
tuple must contain the same number of elements. If a variable appears at least once in
the constraint equations, it must be set to 0 in all the other equations.

• const_equalities (1D tuple) – the constant values of the linear equalities.
const_equalities[i] has to be the constant value of the linear equation with coefficients co-
eff_equalities[i].

Example:

We have the linear constraints given by these equations:

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

𝑎′𝑥 + 𝑏′𝑦 + 𝑐′𝑧 = 𝑑′

𝑎′′𝑥 + 𝑏′′𝑦 = 𝑑′′

then: coeff_equalities = ((a,b,c), (a’, b’, c’), (a”, b”, 0))

const_equalities = (d, d’, d”)

Warning: If a variable is present anywhere in either the equality or inequality
constraints, then it must be explicitly given even if its value is zero (the coefficient
of z in the last equation of the previous example).

coeff_inequalities and const_inequalities are analogously defined, but for the inequality con-
ditions.

• bounds (tuple of tuples) – the bounds of the independent variables. If not present,
they will be set to (None, None) for each independent variable, which will be treated as -inf
and +inf

number_of_variables
number of chemical potentials

Type int

6.2. Determination of the possible values of equilibrium chemical potentials 69

Spinney, Release ’0.9.a2’

variables_extrema
shape = (number elements, 2) for each element, returns the minimum and maximum possible values for its
chemical potential

Type 2D numpy array

variables_extrema_2d
shape = (2, 2) for each element, returns the minimum and maximum possible values for its chemical
potential. Calculated after an intersection with a plane has been performed.

Type 2D numpy array

mu_labels
the symbols labeling the elements for which we caculate the chemical potentials

Type tuple

Notes

ALL INEQUALITIES SHOULD BE IN THE FORM:

coeff_inequalities * x <= const_inequalities

Examples

Suppose that we want to find the chemical potential extrema for Ti and O in rutile TiO2.

We have the following constraints:

𝜇Ti + 2𝜇O = 𝜇TiO2

𝜇Ti + 𝜇O ≤ 𝜇TiO

2𝜇Ti + 3𝜇O ≤ 𝜇Ti2O3

𝜇Ti ≤ 𝜇Ti(𝐻𝐶𝑃)

𝜇O ≤ 1

2
𝜇O2

So, we will have to type:

>>> coeff_equalities = ((1,2))
>>> const_equalities = (mu_TiO2,)
>>> coeff_inequalities = ((1, 1), (2, 3))
>>> const_inequalities = (mu_TiO, mu_Ti2O3)
>>> bounds = ((None, mu_Ti(HCP)), (None, 1/2 mu_O2))

check_value_variables(variables, eq_tol=1e-06)
Checks whether a set of variables is within the feasible region.

Parameters

• variables (array) – the length is given by no_variables: the number of elements
in the system

• eq_tol (float) – tolerance on equality conditions

Returns

result – a booleand and a numpy array of shape self.no_variables times the number
of constraints

• First element:

70 Chapter 6. API reference

Spinney, Release ’0.9.a2’

True, if variables is within the feasible region, False, otherwise.

• Second element:

Array of shape: no_variables times the number of constraints where the number
of contraints is the number of equalities plus inequalities plus bounds conditions.

This array is a 2D array whose rows represent the variables and whose columns rep-
resents the various constraints, the order is:

equalities, inequalities and bound down, bound up

in the same order given by the user at initialization. The values of such matrices are
bool.

Example:

Suppose we have two variables, one equality and two inequality and 2 bounds
constraints. If both variables satisfy the equality, first inequality and bounds.
But variable 2 does not satisfy the second inequality; the funcion will return a
np.ndarray result of shape (2,5):

result = [[True, True, True, True, True],
[True, True, False, True, True]]

Return type tuple

plot_feasible_region_on_plane(plane_axes, plane_values=None, save_plot=False, tol=1e-
06, **kwargs)

Plot the feasibile region intersection with the plane specified by plane_axes.

Parameters

• plane_axes (1D array of length 2) – the array specifies the indices of the
variables which will form the axes of the intersection plane.

• plane_values (1D array of length self.number_of_variables
- 2) – Constant value specifying the plane.

• save_plot (bool) – if True, the plot will be saved

• tol (float) – a numerical tolerance for determining the points giving the feasible
region

• kwargs (dict, optional) – optional key:value pairs for plotting the diagram

Returns

Return type the figure instance of the plot.

Example

For example, if we are considering a ternary system A, B, C, and we want to intersect the feasible region
with the plane B = b, using the axes given by variables A and B, then plane_axes = [0, 2], plane_values =
[b]. This specifies the plane 𝐵 = 𝑏.

By default plane_values is filled with zeros.

set_chemical_potential_labels(labels)
Set the name of the independent variables.

Parameters labels (list) – the names of the independent variables, one should use the
same order used in self.coeff_*

6.2. Determination of the possible values of equilibrium chemical potentials 71

Spinney, Release ’0.9.a2’

set_color_map(cmap)
Set the color map to be used in the plot

Parameters cmap (matplotlib.cm class) – one of the color maps offered by mat-
plotlib. By default Set1 is used, which is fine when less than 10 compounds are considered

set_compound_dict(compounds_dict)
Set a dictionary which contains the compound names relative to the equality, inequality and bound condi-
tions.

Valid names are: formula + _ + description.

description is any string that described the compound

Note: Note that the validity of the name format is not checked internally and should be done by the user.

compounds_dict : dict

{'equality' : [compoundA1, ...],
'inequality' : [compound1, ...],
'bound' : [compoundA, ...]}

the order of the elements in the dictionary values has to be the same of the order used in the
relative const_equalities, const_inequalities and bounds lists

spinney.thermodynamics.chempots.find_partial_pressure_given_mu(mu,
mu_standard,
T, pa=1e-12,
pb=1000000000.0,
en-
ergy_units='eV',
pres-
sure_units='Pa')

Finds the partial pressure required to change the chemical potential of the ideal gas from mu_standard to mu
at temperature T.

Parameters

• mu (float) – the desired value of the chemical potential

• mu_standard (float) – the standard state chemical potential of the ideal gas

• T (float) – the temperature of interest

• pa (float) – the lower bound for the partial pressure

• pb (float) – the upperbound for the partial pressure

• energy_units (string) – the unit of energy used for the value of mu and
mu_standard

• pressure_units (string) – the unit of pressure

Returns p – the partial pressure giving mu

Return type float

spinney.thermodynamics.chempots.get_chem_pots_conditions(file, order, equal-
ity_compounds, delim-
iter=None)

Reads file and returns the data needed to initialize a Range class as well the dictionary describing the various
compounds.

72 Chapter 6. API reference

Spinney, Release ’0.9.a2’

Parameters

• file (str) – the location of the file with the required information The format of this
file must be:

Label_compound(delimiter)energy

Label_compound is a string, whose different entries must be separated by an underscore.

delimiter is a string specifying the delimiter used to separate Label_compound from en-
ergy

energy is a float representing the (formation) energy of the compound

• order (array) – ordered list of the chemical symbols to be used in specifying the
equality and inequality conditions

• equality_compounds (array of strings) – the compounds in file corre-
sponding to the equality conditions

Returns

result – The first 5 elements are needed to initialize a Range instance.

The last element is the argument for the method Range.set_compound_dict()

Return type tuple of 6 elements

spinney.thermodynamics.chempots.get_conditions_from_file(file, order, delim-
iter=None)

Reads and parses a file and returns a triplet with the elements, coefficients, and the constants. These values can
be used for the inequality or equality conditions in Range.

Lines starting with ‘#’ will be skipped.

Parameters

• file (str) – the file that has to be read. The format has to be:
Compound_formula_unit(delimiter)Energy_of_the_compound_per_fu

• Note – All inequalities are indented as “<=”: pay attention to prepare the input file in
this way

• order (array) – the name of the elements in the order that has to be used for the
coefficients. Eg, for the Mn-O system, order can be [‘Mn’, ‘O’] or [‘O’, ‘Mn’]

• delimiter (str) – the symbol used to separate compound names from energy values.

Returns

compound_dict – the keys are the compound identifiers as read from the file. The elements
of the tuple are:

• the formula unit of the compound

• the stoichiometric coefficients for the elements in the compound

• the (formation) energy per atom of the compound

Return type dictionary of 3-ple:

spinney.thermodynamics.chempots.ideal_gas_chemical_potential(mu_standard, par-
tial_pressure, T,
energy_units='eV',
pres-
sure_units='Pa')

6.2. Determination of the possible values of equilibrium chemical potentials 73

Spinney, Release ’0.9.a2’

Temperature and pressure-dependent chemical potential of an ideal gas

𝜇 = 𝜇∘ + 𝑘𝐵𝑇 ln

(︂
𝑝

𝑝∘

)︂
Parameters

• mu_standard (float) – the gas molecule chemical potential at standard pressure

• partial_pressure (array or float) – the gas partial pressure with respect to
the standard pressure

• T (array or float) – the temperature range of interest

• energy_units (string) – the units in which energy is expressed

• pressure_unit (string) – the units in which pressure is expressed

Returns chem_pots – The chemical potentials as a 2D numpy array of shape (len(T),
len(partial_pressure)) if both T and partial_pressure are arrays; otherwise a 1D numpy ar-
ray of length len(partial_pressure) if partial_pressure is an array and T a float; otherwise a 2D
array of shape (len(T), 1) if partial_pressure is a float and T an array; finally if both T and
partial_pressure are float, the result is a float

Return type array/float

spinney.thermodynamics.chempots.parse_mu_from_string(string, delimiter=None)
Reads and parses a string and returns a dictionary with the elements, coefficients, and the constants of the
equality/inequality conditions.

Parameters

• string (str) –

the string that has to be parsed. The format has to be:
Formula_unit(delimiter)Energy_of_the_compound_per_fu
comments

Example: SrTiO3 -12.3

will return:

result = {'Sr':1/5, 'Ti':1/5, 'O':3/5, 'energy':-12.3}

• delimiter (str) – the symbol used to separate compound names from energy values

Returns result – as in the example above

Return type dict

6.3 Correction schemes for electrostatic finite-size effects in super-
cells

• spinney.defects.kumagai

• spinney.defects.fnv

74 Chapter 6. API reference

Spinney, Release ’0.9.a2’

6.3.1 The kumagai module

Implementation of the correction scheme for charged point defects of Kumagai and Oba:

Y. Kumagai and F. Oba, PRB 89, 195205 (2014)

class spinney.defects.kumagai.KumagaiCorr(cell, positions_defective, positions_pristine,
defect_position, defect_formal_charge, di-
electric_constant, dft_core_potential_def,
dft_core_potential_prist, direct_cutoff=10,
reciprocal_cutoff=1, alpha=None,
length_units='Angstrom', energy_units='eV',
tol_en=1e-06, min_steps=2, tol_dist=0.01)

Implementation of the Kumagai correction scheme of: PRB 89, 195205 (2014)

Parameters

• cell (2D numpy array) – cell parameters defective supercell

• positions_defective/positions_pristine (2D numpy array) – frac-
tional coordinates of the atoms in the DEFECTIVE and PRISTINE supercells of same
size and shape.

• defect_position (1D numpy array) – fractional coordinates of the point defect

• defect_formal_charge (float) – charge of the point defect

• dielectric_constant (2D numpy array) – the dielectric tensor

• dft_core_potential_def/dft_core_potential_prist (1D numpy
array) – potential at the ionic sites calculated by first-principles for DEFECTIVE
and PRISTINE systems, respectively. Same atomic ordering as in the corresponding
positions_* arrays

• direct_cutoff/reciprocal_cutoff/alpha – see the spinney.
defects.madelung.Ewald class

• length_units/energy_units (strings) – the unit of length and energy used
for cell and dft_core_potential_*

• tol_dist (float) – rounding tolerance for comparing distances, in units of
length_units

atomic_mapping
element [0] has the indexes of the pristine system atoms with corresponding atoms in the defective system

element [1] has the indexes of the defective system mapped by map[0]. Where map is returned by
map_atoms_pristine_defect()

Type 2-ple of 1D arrays

atoms_in_sampling_region
the first element contains the indices of the atoms of the pristine system in the sampling region, the second
element contains the corresponding atoms of the defective system

Type 2-ple

difference_potential_vs_distance
element [0] is an array containing the distances from the point defects where the electrostatic core potential
has been sampled

element [1] is the difference of the defective and pristine core potentials at the point whose distance from
the defect is in element [0]

6.3. Correction schemes for electrostatic finite-size effects in supercells 75

Spinney, Release ’0.9.a2’

Type 2-ple of 1D arrays

difference_potential_vs_distance_sampling_region
as above, but only the sampling region is considered

Type 2-ple of 1D arrays

alignment_potential_vs_distance_sampling_region
element [0] is an array containing the distances from the defect of the sites within the sampling region.

element [1] is the corresponding alignment potential: site potential defect - site potential pristine - ewald
potential

Type 2-ple of 1D arrays

ewald_potential_vs_distance_sampling_region
the ewald potential calculated at the sites in the sampling region. Structure analogous to
alignment_potential_vs_distance_sampling_region

Type 2-ple of 1D arrays

grouped_atom_by_distance
the first element of the tuple reports the distances from the defect The second element is another 2-ple;
each element of this tuple contains a list of lists. Each inner list contains the atomic index of the atoms that
are at a given distance (within tol_dist) from the defective site for the pristine and defective supercell.

Type 2-ple

property difference_potential_vs_distance
Pot_def - Pot_pristine

spinney.defects.kumagai.kumagai_sampling_region(cell, atom_coordinates, de-
fect_position)

Given the scaled coordinates of atoms in the supercell, returns the indices of the atoms belonging to the sampling
region as defined in: Y. Kumagai and F. Oba, PRB 89, 195205 (2014)

Parameters

• cell (2D numpy array) – each row represents the Cartesian coordinates of the
primitive vectors

• atom_coordinates (2D numpy array) – each row represents the fractional co-
ordinates of the atoms in the supercell

• defect_position (1D numpa array) – the scaled coordinates of the defect atom
in the supercell. It will be used to center the supercell

Returns

in_region, sphere_radius – in_region is a list with the indexes of the atoms in the sam-
pling region.

sphere_radius is a float and it is the radius of the sphere inscribed in the Wigner-Seitz
cell.

Return type tuple

spinney.defects.kumagai.map_atoms_pristine_defect(cell, scaled_pos_prist,
scaled_pos_defect, dist_tol=0.01)

Return a mapping between the indexes of the atoms in the pristine supercell and those of the atoms in the
defective supercell. Both supercells have to be the same.

Parameters

• cell (2D numpy array) – the supercell

76 Chapter 6. API reference

Spinney, Release ’0.9.a2’

• scaled_pos_prist (2D numpy array) – fractional atomic positions of the pris-
tine system

• scaled_pos_defect (2D numpy array) – fractional positions of the defective
system

Warning: It is assumed that both pristine and defective system have the same cell:
cell

• dist_tol (float/array of 3 elements) – tolerance value for which 2 dis-
tances are considered equal. If float, the value will be used to create an array with 3
elements. Each elements represent the tolerance along the corresponding cell parameter.
Default value: 1% of the corresponding cell parameter.

Returns

map – map[0] has the indexes of the pristine system with correspective atoms in the defec-
tive system

map[1]`has the indexes of the defective system atoms mapped by
:data:`map[0]

Return type 2-ple of 1D arrays

6.3.2 The fnv module

Standalone implementation of the correction scheme for charged defects proposed by Freysoldt, Neugebauer and Van
de Walle.

Phys. Rev. Lett. 102, 016402 (2009)

Internally, the code use atomic units of Hartree and Bohr, as implemented in Freysoldt et al. papers.

The input values have to be inserted in units of eV and Angstrom and the final values will also be converted to these
units.

class spinney.defects.fnv.FChargeDistribution(x=0, gamma=1, beta=1)
Gaussian + exponential tail radial charge distribution employed by Freysoldt et. al., Phys. Status Solidi B 248,
5 (2011)

𝑞(𝑟) = 𝑞
(︁
𝑥𝑁1𝑒

−𝑟/𝛾 + (1 − 𝑥)𝑁2𝑒
−𝑟2/𝛽2

)︁
𝑁1 =

1

8𝜋𝛾3

𝑁2 =
1

(
√
𝜋𝛽)3

x and gamma may be found from looking at the defect wave function. The value of beta is not so important
as long as the defect remains localized. A Gaussian function usually performs well enough.

Parameters

• x (float) –

• gamma (float) – units of Angstrom

• beta (float) – units of Angstrom

6.3. Correction schemes for electrostatic finite-size effects in supercells 77

Spinney, Release ’0.9.a2’

Notes

For localized states, x = 0; for delocalized ones, usually x is around 0.54-0.6 in semiconductors.

Direct()
The normalized charge distribution in real space

Fourier_transform()
The Fourier trasform of Direct()

Fourier_transform_gto0()
The second derivative of the charge distribution with respect to g. It approximates the distribution for
𝑔 → 0:

q(g-->0) ~ q.Fourier_transform(0) + 1/2 q.Fourier_transform_gto0()

The term is used for getting the potential alignment 𝑉0 of equation 17.

classmethod get_model_D()
Model function to be used for fitting

class spinney.defects.fnv.FCorrection(supercell, q, charge_distribution, pristine_pot,
defective_pot, dielectric_constant, def_position,
axis_average, cutoff=500, tolerance=1e-06,
shift_tol=1e-05)

Implementation of Freysoldt et al. correction.

Note: the code assumes that the units are Angstrom for lengths and eV for energies!

Parameters

• supercell (2D array) – each rows represents the cartesian coordinates of the vec-
tors describing the supercell

• q (int) – charge state of the defect

• pristine_pot (3D numpy array) – this array must contain the total electrostatic
potential calculated on 3D grid for the pristine system. The shape of the array is: (Na,
Nb, Nc)

where Nx is the number of grid points along the cell parameter x

• defective_pot (3D numpy array) – as pristine_pot but for the defective system

• charge_distribution (FChargeDistribution instance) – the model charge
distribution used for the defect-induced charge density

• dielectric_constant (float) – dielectric constant of the bulk system

• def_position (array) – defect position in the defective supercell in fractional co-
ordinates with respect to supercell

• axis_average (int) – axis which will be used to perform the plane-average of the
electrostatic potential:

– 0 for a

– 1 for b

– 2 for c

• cutoff (float) – cutoff for reciprocal space vectors, IN eV

78 Chapter 6. API reference

Spinney, Release ’0.9.a2’

• tolerance (float) – tolerance threshold used in calculating the energy terms

• shift_tol (float) – tolerance in findind the defect position on the 3D grid

generate_reciprocal_space_grid(cutoff)
Generates a regular mesh of reciprocal space points given a cutoff energy.

Parameters cutoff (float) – maximum kinetic energy, in Hartree, of the k-point

Returns grid – the reciprocal lattice vectors in Cartesian coordinates in units of Bohr

Return type list

get_E_lat(all_contributions=False)
Gets the 𝐸𝑙𝑎𝑡[𝑞] part of the correction scheme. From equation (8) in Freysoldt et al. PSS B 248, 5 (2011).

Parameters all_contributions (bool) – if True, the function returns the various con-
tributions: E_lat, E_lat1, E_lat2; otherwise just the total E_lat

Returns energy_values – The values IN eV.

Return type float/tuple

get_correction_energy()
Returns the correction energy for finite-size effects to add to the calculated DFT energy.

Returns E_corr – The correction term

Return type float

get_potential_alignment()
Get the potential alignment term. I.e. the 𝑞∆𝑉 term in equation (13) of PSS B 248, 5 (2011)

class spinney.defects.fnv.FFitChargeDensity(cell, charge_model, density_proj_def, de-
fect_position, axis_average, tol=1e-05)

Fits the model charge density to the DFT defective charge density averaged along an axis.

Parameters

• cell (2D numpy array) – each row reoresents the Cartesian coordinates of one cell
parameter of the crystal unit cell

• charge_model (class) – model of the charge density

• density_proj_def (3D numpy array) – the defect-induced charge density on a
3D grid. In case of spin-polarized calculations, it is the net charge density. The shape of
the array is: (Na, Nb, Nc)

where Nx is the number of grid points along the cell parameter x

• defect_position (1D array) – the position of the defect with respect to the cell
parameters (i.e. the fractional coordinates)

• axis_average (int) – the axis along which perform the plane-average

• tol (float) – numerical spatial tolerance

fit_model()
Fit the model charge density

class spinney.defects.fnv.FPlotterPot(coordinates, av_locpot_diff, av_lr_pot, av_sr_pot,
pot_alignment, axis_name)

Helper class for plotting the potentials.

Parameters

6.3. Correction schemes for electrostatic finite-size effects in supercells 79

Spinney, Release ’0.9.a2’

• coordinates (array) – coordinates to plot the potentials along an axis, can be frac-
tional or Cartesian

• av_locpot_diff (array) – difference DFT potential between defective and pristine
system plane-averaged along an axis

• av_lr_pot (array) – the analytical long-range potential, plane-averaged over an axis

• av_sr_pot (array) – the short-range potential

• pot_alignment (float) – the final aligment of the potentials far from the defect

• axis_name (string) – the name of the axis along which the potentials were calcu-
lated

plot(title='')
Plot the potentials

Parameters title (string, optional) – the plot title

spinney.defects.fnv.plane_average_potential(locpot, axis)
Makes the plane-average of the electrostatic potential along the chosen axis.

Parameters

• locpot (3D array) – the local electrostatic potential on a 3D mesh

• axis (int) – 0 for a 1 for b 2 for c where a,b,c are the cell parameters along which the
3D grid is defined

Returns 1D numpy array

Return type the plane-averaged potential along the chosen axis

6.4 Calculation of equilibrium defect properties

• spinney.defects.diagrams

• spinney.defects.concentration

6.4.1 The diagrams module

Implements the creation of the diagrams reporting the formation energy of point defects as a function of the electron
chemical potential.

class spinney.defects.diagrams.Diagram(defects_dictionary, gap_range, ex-
tended_gap_range=None, electron_mu=None)

A diagram represent the formation energies of various point defects, in various charge states, as a function of
the electron chemical potential, whose value ranges from the valence band maximum to the conduction band
minimum of the host material.

This class is basically a composition of PointDefectLines instances with some tools for plotting the final dia-
gram.

Parameters

• defects_dictionary (dict of dicts) – for each point defect named “defect”,
the value is a dictionary in the form: {charge_state1 : formation_energy_at_VBM, . . . }

Example:

For vacancy and N center in diamond:

80 Chapter 6. API reference

Spinney, Release ’0.9.a2’

>>> defects_dictionary = {
'V' : {-1 : value1, 0 : value2, 1 : value3},
r'N_C' : {0 : value4}
}

The value of VBM must be consistent with gap_range[0]

• gap_range (array of 2 elements) – the band gap range. The first value must be
consistent with the valence band maximum (VBM) used to calculate the defect formation
energy in defect_dictionary

• extended_gap_range (array of 2 elements) – an extended range for the
band gap. This value can be used for example when gap_range is the underestimated
DFT band gap and we want to plot the defect formation energy lines on a wider gap.
In this case, the difference between the extended region and the original region will be
plotted in gray.

• electrom_mu (float) – pinned value of the electron chemical potential wrt the va-
lence band maximum (gap_range[0])

labels
{defect_name : defect_label, . . . } where defect_name is one of the top keys if defects_dictionary

Type dict

defects
{defect_name : Line instance representing that defect type, . . . }

Type dict

plot(**kwargs)
Plot the diagram.

Parameters kwargs (dict) – optional key:values pair for plotting the diagram

write_transition_levels(file_name)
Writes the charge transition levels of the system on a txt file.

Parameters file_name (string) – the name of the file where the transition levels will be
written

class spinney.defects.diagrams.Line(m, q, x0)
A simple class describing the equation of a line:

𝑦 = 𝑚(𝑥− 𝑥0) + 𝑞

where q is the intercept with the y = x0 axis

class spinney.defects.diagrams.PointDefectLines(defect_name, e_form_min_dict,
gap_range, ex-
tended_gap_range=None)

This class holds the information to represent a line on the formation energy diagrams of point defects.

Parameters

• defect_name (string) – the name of the defect

• e_form_min_dict (dict) – {charge_state1 : formation_energy1_at_VBM, . . . }

charge_state1 is an integer describing the defect charge state; forma-
tion_energy1_at_VBM is a floating-point number indicating the formation energy
of that defect for an electron chemical potential equal to the valence band maximum
(VBM) of the host material. This VBM value must be stored in gap_range

6.4. Calculation of equilibrium defect properties 81

Spinney, Release ’0.9.a2’

• gap_range (array of 2 elements) – (valence_band_maximum, conduc-
tion_band_minimum) representing the allowed range for the electron chemical potential.
Note that the VBM to which e_form_dict refers to is gap_range[0]

• extended_gap_range (array of 2 elements) – an extended range for the
band gap. This value can be used for example when gap_range is the underestimated
DFT band gap and we want to evaluate the defect formation energy lines on a different
gap.

lines
{charge_state1 : line1, . . . } for each defect charge state of the instance. line1 is a Line instance.

Type dict

intersections
For each charge state of the defect, one has the dictionary containing the coordinates of the intersection
point between the line corresponding to that charge state and the lines of all other charge states and band
edges as well.

Type dict of dicts

lines_limits
{defect_charge_state1 : [y_0, y_1], . . . } y_0 and y_1 are two numpy arrays with two elements each:

the values of the electron chemical potential and those of the defect formation energy corre-
sponding to the two points between which the formation energy of defect_charge_state1 is the
lowest one among all other defect charge states.

Type defaultdict

transition_levels
Returns the transition levels among the possible charge states as a dictionary:

{charge_state1 : {charge_state2 : transition_level,
charge_state3 : transition_level, ...}, ...}

transition_level is the electrom chemical potential value at the transition level between charge states. For
a complete list of intersection between all defect lines, use self.intersections

Type dict

property intersections
Returns a dictionary of dictionaries. For each charge state of the defect, one has the dictionary containing
the coordinates of the intersection point between the line corresponding to that charge state and all other
charge states and band edges as well.

property lines_limits
The attribute _lines_limits is a defaultdict:

{defect_charge_state1 : [y_0, y_1], . . . } y_0 and y_1 are two numpy arrays with two elements each: the
values of the electron chemical potential and those of the defect formation energy corresponding to the
two points between which the formation energy of defect_charge_state1 is the lowest one among all other
defect charge states.

This is a subset of self._intersections

plot_lines(ax='auto', **kwargs)
Given an existing axes, plots the defect formation energy lines

Parameters

82 Chapter 6. API reference

Spinney, Release ’0.9.a2’

• ax (matplotlib.axes.Axes instance) – the axes where the lines should be plot-
ted

• kwargs (dict) – additional key:value pairs taken by matplotlib.pyplot.plot

property transition_levels
Returns the transition levels among the possible charge states as a dictionary:

{charge_state1 [{charge_state2][transition_level,] charge_state3 : transition_level, . . . }, . . . }

transition_level is the electrom chemical potential value at the transition level between charge states. For
a complete list of intersection between all defect lines, use self.intersections

spinney.defects.diagrams.extract_formation_energies_from_file(file_name)
Read a file with the format:

arbitrary number of comment lines
defect_name defect_charge_state defect_formation_energy

Parameters file_name (string) – the file with the data

Returns diagram_dict – dictionary containing the information necessary to initialize an
Diagram instance.

Return type defaultdict(dict)

spinney.defects.diagrams.set_latex_globally()
Call this function to use latex synthax globally in matplotlip. Note that now every string used through matplotlib
has to respect latex synthax.

6.4.2 The concentration module

Functions and classes for calculating defect and carrier concentrations and related quantities from their formation
energies.

class spinney.defects.concentration.Carrier(dos, vbm, cbm, mu, T, dos_down=None, en-
ergy_units='eV')

Object describing a free carrier in a semiconductor.

Parameters

• dos (2D array) – the first column stores the 1-electron energy levels, the second col-
umn stores the corresponding DOS. The energy must be sorted by increasing values.

• vbm (float) – the energy level corresponding to the valence band maximum

• cbm (float) – the energy level corresponding to the conduction band minimum

• mu (float) – the electron chemical potential

• T (float or array) – the temperature range where the concentration will be calcu-
lated

• dos_down (2D array) – If left to None, then the spin-down electrons are considered
to have the same dos as dos.

Note:

in case the spin down dos is reported using negative numbers, you need to flip
the sign before using them in this function.

• units (str) – the units of energy

6.4. Calculation of equilibrium defect properties 83

Spinney, Release ’0.9.a2’

mu
electron chemical potential

Type float

T
the temperature for which the Fermi Dirac distribution is calculated

Type float or 1D numpy array

class spinney.defects.concentration.ConductionElectron(dos, vbm, cbm, mu, T,
dos_down=None, en-
ergy_units='eV')

Class describing a free electron

get_conduction_electron_number()
Returns the number of electrons in the conduction band as a 1D numpy array of length of T

class spinney.defects.concentration.DefectConcentration(E_form, N, T, g=1, en-
ergy_units='eV')

Class describing defect concentrations in the dilute limit at the thermodynamic equilibrium:

𝑛𝑑
𝑒𝑞(𝑇) =

𝑁𝑑𝑔

𝑒𝐸𝑓 (𝑑)/𝑘𝐵𝑇 + 𝑔

Or the approximated expression often used:

𝑛𝑑
𝑒𝑞(𝑇) = 𝑁𝑑𝑔𝑒

(−𝐸𝑓 (𝑑)/𝑘𝐵𝑇

𝑁𝑑 is the number of sites available for the specific defect in the crystal.

Parameters

• E_form (float) – The formation energy of the point defect

• N (float) – The number of sites available for the defect per volume unit. This is usually
expressed in number of sites per cm^3, or number of sites per cell.

• T (array or float) – The temperatures (in K) to use for calculating the defect con-
centration

• g (float) – the intrinsic degeneracy of the defect

• energy_units (string) – the employed units of energy

dilute_limit_concentration
the defect concentration at each temperature. If T was a scalar, a scalar is returned.

Type 1D numpy array of length len(T)

dilute_limit_approx_concentration
the defect concentration at each temperature, using the more approximative exponential formula. If T was
a scalar, a scalar is returned.

Type 1D numpy array of length len(T)

class spinney.defects.concentration.EquilibriumConcentrations(charge_states,
form_energy_vbm,
vbm, e_gap,
site_conc,
dos, T_range,
g=None,
N_eff=0,
units_energy='eV',
dos_down=None)

84 Chapter 6. API reference

Spinney, Release ’0.9.a2’

Represents the defects and carriers concentrations for Fermi level values given by the charge neutrality condition
in a homogeneous semiconductor: ∑︁

𝑖

𝑞𝑖𝑛𝑑(𝑞, 𝑇) + 𝑝− 𝑛 = 𝑁𝑑

where 𝑞𝑖 is the defect charge state, 𝑛𝑑 its concentration, 𝑝 and 𝑛 are the concentration of free holes and electrons,
respectively and 𝑁𝑑 is the effective doping level.

Parameters

• charge_states (dict of arrays or None) – defect_type : list of charge
states for all considered defects If equal to None, the pristine semiconductor is consid-
ered.

Example:

If we consider the Si vacancy and Si interstitials in the charge states -2, -1, 0, 1,
2; then:

>>> charge_states = {'Si_int':[-2, -1, 0, 1, 2],
... 'Vac_Si':[-2, -1, 0, 1, 2]}

• form_energy_vbm (dict of arrays or None) – defect_type : the defect for-
mation energy calculated for an electron chemical potential equal to vbm. For any array,
the order of the values must be the same as the one used in charge_states

If equal to None, the pristine semiconductor is considered.

Example:

For the defects listed above, we would type:

>>> form_energy_vbm = {'Si_int':[val_m2, val_m1, val_0,
... val_1, val_2],
... 'Vac_Si':[valv_m2, valv_m1, valv_0,
... valv_1, valv_2]}

where val_m2 is the formation energy of the Si interstitial in charge state -2,
valv_m2 is the one of the Si vacancy in this charge state and so on.

• vbm (float) – the value of the valence band maximum

• e_gap (float) – the value of the band gap

• site_conc (dict) – defect_type : site_concentration for defect_type = ‘electron’ and
‘hole’, this value should be the concentration for the unit cell used to calculate dos.

Example:

For the defects listed above, we have:

>>> site_conc = {'Si_int' : conc_Si_int,
... 'Vac_Si' : conc_Vac_Si,
... 'electron': conc_electrons,
... 'hole' : conc_holes}

• dos (2D array) – The first column are the energies of 1-electron level, the second the
DOS per cell. The values of vbm and e_gap must be consistent with the dos.

• T_range (array or float) – the temperature range

6.4. Calculation of equilibrium defect properties 85

Spinney, Release ’0.9.a2’

• g (dict of lists or None) – defect_type : [degeneracy charge state 1, degener-
acy charge_state 2, . . .] each list represents the degeneracy for a given type of defect in
each of its charge states. The order has to match that of charge_states[defect_type].

If None, all the degeneracy factors are taken equal to 1. The structure is analogous to
charge_states.

• N_eff (float) – the effective-doping concentration

• units_energy (str) – employed energy units

• dos_down (array) – the eventual dos for the spin-down electrons

defect_order
the ordered sequence with the defect names.

Type tuple

charge_states
defect_name : sequence of charge states of the defect

Type dict

formation_energies_vbm
defect_name : sequence of the defect formation energies, for every charge state listed in
charge_states, for an electron chemical potential equal to vbm

Type dict

formation_energies_equilibrium
defect_name : sequence of the defect formation energies, for every charge state listed in
charge_states, for an electron chemical potential equal to equilibrium_fermi_level

Type dict

site_conc
defect_name : effective concentration for that kind of defect

Type dict

T
the temperatures considered for calculating the defect formation energies

Type numpy 1D array

vbm
the value of the pristine system valence band maximum

Type float

cbm
the value of the pristine system conduction band minimum

Type float

N_eff
effective dopant concentration

Type float

equilibrium_fermi_level
the value of the electron chemical potential at the equilibrium for a given temperature

Type numpy 1D array of length len(self.T)

86 Chapter 6. API reference

Spinney, Release ’0.9.a2’

equilibrium_defect_concentrations
defect_name : {defect_charge_state : array, . . . } where array is a numpy 1D array of length len(self.T)
holding the calculated defect concentration for that charge state at at given temperature

Type dict

equilibrium_electron_concentrations
len(self.T) the value of the electron concentration at the equilibrium for a given temperature

Type numpy 1D array of length

equilibrium_hole_concentrations
the value of the hole concentration at the equilibrium for a given temperature

Type numpy 1D array of length len(self.T)

equilibrium_carrier_concentrations
len(self.T) the value of the carrier concentration at the equilibrium for a given temperature. If the value is
positive, holes are the main carriers; otherwise electrons.

Type numpy 1D array of length

find_root_algo
specifies which algorithm to use in order to find the roots of the charge neutrality condition. Possible
values:

• brentq, newton, bisect

Type string

get_equilibrium_defect_concentrations()
Return the equilibrium defect concentration as a function of the temperature.

Returns concentrations

Return type 2D numpy array of shape (len(self._charge_states), len(self._T))

get_equilibrium_electron_concentrations()
Return the equilibrium electron concentration as a function of the temperature.

Returns concentrations

Return type 1D array of length len(self.T)

get_equilibrium_fermi_level()

Return the equilibrium value of the Fermi level as a function of the temperature.

Returns equilibrium_fermi_level – the calculated Fermi level as a function of T

Return type 1D numpy array of length len(self.T)

class spinney.defects.concentration.FermiDiracDistribution(energy, mu, T, en-
ergy_units='eV')

Implementation of the Fermi-Dirac distribution:

1

1 + 𝑒(𝐸−𝜇𝑒)/𝑘𝐵𝑇

Parameters

• energy (float or 1D darray) – the energies of the 1-electron levels

• mu (float) – the electron chemical potential

6.4. Calculation of equilibrium defect properties 87

Spinney, Release ’0.9.a2’

• T (float or 1D array) – the temperature

• energy_units (string) – the units in which energy and mu are expressed. T is
always assumed to be in K.

mu
the electrom chemical potential

Type float

kb
Boltzman constant in terms of energy_units

Type float

values
The values of the Fermi distribution for those values of energy and temperature.

Type numpy 2D array of shape (len(energy), len(T))

class spinney.defects.concentration.ValenceHole(dos, vbm, cbm, mu, T,
dos_down=None, energy_units='eV')

Class describing a free hole

get_valence_holes_number()
Returns the number of holes in the valence band as a 1D numpy array of length of T.

spinney.defects.concentration.extract_formation_energies_from_file(file_name)
Read a file with the format:

arbitrary number of comment lines
defect_name defect_charge_state defect_formation_energy

Parameters file_name (string) – the file with the data

Returns init_args – the tuple contains two elements: the two dictionaries to be used as the first
two arguments for initializing a EquilibriumConcentrations instance

Return type tuple

6.5 General-purpose tools

• spinney.tools.formulas

• spinney.tools.reactions

6.5.1 The formulas module

Module containing functions useful for manipulating chemical formulas

spinney.tools.formulas.count_elements(compound, total=False)
Returns the number of atoms in a chemical system.

Parameters

• compound (str) – the compound of interest

• total (bool) – If True, the total number of atoms in the system is also returned

Returns el_count – Dictionary: atom:number of atoms for each atom in compound. If
total, returns also the number of elements in compound

88 Chapter 6. API reference

Spinney, Release ’0.9.a2’

Return type dict/tuple

spinney.tools.formulas.get_formula_unit(compound)
Gets the formula unit of a particular compound

Parameters compound (string) – the formula of the compound.

Returns formula_unit – the formula unit of compound

Return type string

Notes

This function automatically reduces the coefficients to the smallest integers. It however preserves the number of
symbols in the formula; e.g. C6H6 will return CH, but CH3COOH will return still CH3COOH.

spinney.tools.formulas.get_number_fu(compound, fu=None)
Returns how many formula units fu are present in compound

Parameters

• compound (string) – the formula of the compound

• fu (string) – the formula unit If None, the actual formula unit is used

Returns no_units – The number of formula units in compound

Return type float

spinney.tools.formulas.get_stoichiometry(compound, fractional=True)
Given compound, it returns its stoichiometry.

Parameters

• compound (string) – the compound’s formula

• fractional (bool) – if True, for each element is returned its molar fraction; other-
wise, it is returned the number of atoms per formula

Returns elements_count – A dictionary element:coefficient for each element in compound

Return type dict

6.5.2 The reactions module

Helper functions for calculating reaction energies.

spinney.tools.reactions.calculate_defect_formation_energy(e_defect, e_pristine,
chem_potentials,
charge_state,
E_corr=0)

Calculate the formation energy of a point defect.

Parameters

• e_defect (dict) – {formula : energy of the defective supercell}

• e_pristine (dict) – {formula : energy of the pristine supercell}

• chem_potentials (dict) – {element_name : chemical_potential} element_name is
the element symbol, in the case of the electron, element_name = electron

• charge_state (int) – the formal charge state of the defect

6.5. General-purpose tools 89

Spinney, Release ’0.9.a2’

• E_corr (float) – eventual corrections to the defect formation energy

Returns formation_energy

Return type float

spinney.tools.reactions.calculate_formation_energy_fu(compound_dict, compo-
nents_dict)

Calculated the formation energy of a given compound per formula unit

Parameters

• compound_dict (dict) – formula : energy for each compound needed to
calculate the defect formation energy: formula is a string representing the compound
formula, energy is a number, representing the corresponding compound energy.

• components_dict (dict) – formula : energy for each compound needed to
calculate the defect formation energy: formula is a string representing the compound
formula, energy is a number, representing the corresponding compound energy.

Examples

In order to calculate the formation energy of SrTiO3, compound_dict and components_dict are:

>>> compound_dict = {'SrTiO3':Ec}
>>> components_dict = {'Sr':Esr, 'Ti':Eti, 'O2':Eo2}

spinney.tools.reactions.calculate_reaction_energy(reaction, compound_energies)
Calculates the reaction energy of a compound

Parameters reaction (dict of lists of tuples) – Describes the reaction that will be
calculated. The dictionary keys are ‘reactants’ and ‘products’. The value of ‘reactants’ is a
list with tuples. Each tuple contains the FORMULA UNIT of the reactants and the number
of moles for that reactant in the reaction. The value of ‘products’ is analogous, but for the
products.

The compounds specified in reaction will be taken as the formula units in calculating the
reaction.

compound_energies [dict of lists] Analogous structure as in reaction, but instead of the number of moles,
the values are the calculated energies.

Note: the order of the compounds in each list has to match that in reaction!

E.g. we calculated the energies of ‘Mn2’ (bcc Mn cell), ‘O2’ and ‘Mn32O48’ (Pbca space group) Then
we would have:

>>> compound_energies = {
'reactants' : [('Mn2',E1), ('O2', E2)],
'products' : [('Mn32O48', E3)]

}

Returns energy – The energy of the reaction specified in reaction

Return type float

90 Chapter 6. API reference

Spinney, Release ’0.9.a2’

Examples

Suppose one is interested in the reaction:

2Mn + 3/2O2 → Mn2O3

And one has calculated the energy of Mn2 (bcc cell) and stored it in the variable E1, the energy of O2 is stored
in E2 and that of Mn2O3 in E3. Then to calculate the reaction energy one can use:

>>> reaction = {
'reactants' : [('Mn', 2), ('O2', 3/2)],
'products' : [('Mn2O3', 1)]

}
>>> compound_energies = {

'reactants' : [('Mn2', E1), ('O2', E2)],
'products' : [('Mn2O3', E3)]}

>>> calculate_reaction_energy(reaction, compound_energies)

spinney.tools.reactions.get_compound_energy_per_atom(energy, formula)
Returns the energy of the compound per atom (unit_energy/atom)

Parameters

• energy (float) – the energy of the compound

• formula (string) – the formula of the compound

Returns energy – The energy per atom

Return type float

spinney.tools.reactions.get_compound_energy_per_formula_unit(energy, for-
mula, for-
mula_unit=None)

Returns the calculated energy of the compound per formula unit (unit_energy/f.u.)

Parameters

• energy (float) – the energy of the compound with formula formula

• formula (string) – the compound formula

• formula_unit (string) – The formula unit of the compound

Returns energy – The total energy per formula unit and the number of formula units in formula

Return type float

6.6 Support for first-principles codes

• spinney.io.vasp

• spinney.io.wien2k

6.6. Support for first-principles codes 91

Spinney, Release ’0.9.a2’

6.6.1 The io.vasp module

Helper functions for VASP postprocessing

spinney.io.vasp.extract_dos(vasprun_file, save_dos=False)
From the vasprun.xml file extrat the DOS.

Parameters

• vasprun_file (string) – path to the vasprun.xml file

• save_dos (bool) – if True, the extracted DOS are saved as a text file. The first column
is the energy (in eV) and the second the DOS (states/cell)

Returns dos – each element is a 2D numpy array. First column

Return type 2-ple, the DOS up and DOS down (if any)

spinney.io.vasp.extract_potential_at_core_vasp(file)
Read the VASP OUTCAR file and extract the values of the electrostatic potential evaluated at the ions positions.

Parameters file (string) – path to the OUTCAR file

Returns result – for each atom in the system, returns the electrostatic potential at the atomic sites

Return type 1D numpy array

6.6.2 The io.wien2k module

Helper functions for WIEN2k

spinney.io.wien2k.average_core_potential_wien2k(potential, r0, rmax)
Calculates the average core potential within a spherical shell with the smallest raius r0 and the largest rmax.

Parameters

• potential (1D numpy array) – the radial part of the potential corresponding to
the l=0, m=0 angular component.

• r0 (float) – the smallest radius of the shell

• rmax (float) – the largest radius of the shell

Returns float

Return type the averaged potential in the spherical shell

spinney.io.wien2k.extract_potential_at_core_wien2k(struct, vcoul)
Extracts the average electrostatic potential within the atomic spheres for each atom in the system.

Parameters

• struct (string) – the path to the .struct file

• vcoul (string) – the path to the .vcoul file

Returns result – for each atom in the system, returns the average electrostatic potential within the
spherial region

Return type 1D numpy array

spinney.io.wien2k.prepare_ase_atoms_wien2k(struct_file, scf_file)
Prepare an ase.Atoms object compatible with the interface of the PointDefect class in Spinney.

Parameters

92 Chapter 6. API reference

Spinney, Release ’0.9.a2’

• struct_file (string) – the path to the WIEN2K .struct file

• total_energy (float) – the value of the total energy as found in the WIEN2K .scf
file

Returns ase_wien – the ase.Atoms object representing the system

Return type ase.Atoms

spinney.io.wien2k.read_energy_wien2k(scf_file)
Returns the total electronic energy.

Parameters scf_file (string) – path to the WIEN2k .scf file

Returns energy – the energy of the system

Return type float

spinney.io.wien2k.read_wien2k_radial_data(struct_file)
Reads from a .struct file some information about the atom-centered spheres related to the radial potential within
the sphere.

Parameters struct_file (str) – path to the struct file

Returns No_atoms is the number of irreducible atoms in the system, for each of them, we store
R0, RMT, NPT, MULTI

Return type 2D tuple array of shape (No_atoms, 4)

spinney.io.wien2k.read_wien2k_vcoul(vcoul_file)
Reads the radial part of the electrostatic potential, corresponding to the angular term l=0, m=0, inside the atomic
sphere.

Parameters vcoul_file (str) – the path of the .vcoul file

Returns result – each list contains the radial potential for one atom

Return type list of lists

6.6. Support for first-principles codes 93

Spinney, Release ’0.9.a2’

94 Chapter 6. API reference

CHAPTER

SEVEN

BIBLIOGRAPHY

95

Spinney, Release ’0.9.a2’

96 Chapter 7. Bibliography

CHAPTER

EIGHT

CONTACT

8.1 E-mail

The developers of Spinney can be reached through these e-mail addresses:

• marco.arrigoni@tuwien.ac.at, marco.arrigoni@outlook.de

• georg.madsen@tuwien.ac.at

8.2 Gitlab

Spinney is hosted on Gitlab on the following web page:

• https://gitlab.com/Marrigoni/spinney

97

mailto:marco.arrigoni@tuwien.ac.at
mailto:marco.arrigoni@outlook.de
mailto:georg.madsen@tuwien.ac.at
https://gitlab.com/Marrigoni/spinney

Spinney, Release ’0.9.a2’

98 Chapter 8. Contact

BIBLIOGRAPHY

[FGH+14] Christoph Freysoldt, Blazej Grabowski, Tilmann Hickel, Jörg Neugebauer, Georg Kresse, Anderson
Janotti, and Chris G. Van de Walle. First-principles calculations for point defects in solids. Rev. Mod.
Phys., 86:253–305, Mar 2014. doi:10.1103/RevModPhys.86.253.

[FNVdW09] Christoph Freysoldt, Jörg Neugebauer, and Chris G. Van de Walle. Fully ab initio finite-size
corrections for charged-defect supercell calculations. Phys. Rev. Lett., 102:016402, Jan 2009.
doi:10.1103/PhysRevLett.102.016402.

[KO14] Yu Kumagai and Fumiyasu Oba. Electrostatics-based finite-size corrections for first-principles point
defect calculations. Phys. Rev. B, 89:195205, May 2014. doi:10.1103/PhysRevB.89.195205.

[LVdW17] John L. Lyons and Chris G. Van de Walle. Computationally predicted energies and properties of defects
in gan. npj Computational Materials, 3(1):12, 2017. doi:10.1038/s41524-017-0014-2.

[MWC98] Jr Malcolm W. Chase. NIST-JANAF thermochemical tables. Fourth edition. Washington, DC : American
Chemical Society ; New York : American Institute of Physics for the National Institute of Standards and
Technology, 1998., 1998. URL: https://search.library.wisc.edu/catalog/999842910902121.

[PTA+92] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization
techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev.
Mod. Phys., 64:1045–1097, Oct 1992. doi:10.1103/RevModPhys.64.1045.

[ZN91] S. B. Zhang and John E. Northrup. Chemical potential dependence of defect formation en-
ergies in gaas: application to ga self-diffusion. Phys. Rev. Lett., 67:2339–2342, Oct 1991.
doi:10.1103/PhysRevLett.67.2339.

99

https://doi.org/10.1103/RevModPhys.86.253
https://doi.org/10.1103/PhysRevLett.102.016402
https://doi.org/10.1103/PhysRevB.89.195205
https://doi.org/10.1038/s41524-017-0014-2
https://search.library.wisc.edu/catalog/999842910902121
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1103/PhysRevLett.67.2339

Spinney, Release ’0.9.a2’

100 Bibliography

PYTHON MODULE INDEX

s
spinney, 61
spinney.defects.concentration, 83
spinney.defects.diagrams, 80
spinney.defects.fnv, 77
spinney.defects.kumagai, 75
spinney.io.vasp, 92
spinney.io.wien2k, 92
spinney.structures.defectivesystem, 66
spinney.structures.pointdefect, 62
spinney.thermodynamics.chempots, 67
spinney.tools.formulas, 88
spinney.tools.reactions, 89

101

Spinney, Release ’0.9.a2’

102 Python Module Index

INDEX

A
add_correction_scheme_data() (spin-

ney.structures.pointdefect.PointDefect method),
63

alignment_potential_vs_distance_sampling_region
(spinney.defects.kumagai.KumagaiCorr at-
tribute), 76

atomic_mapping (spin-
ney.defects.kumagai.KumagaiCorr attribute),
75

atoms_in_sampling_region (spin-
ney.defects.kumagai.KumagaiCorr attribute),
75

average_core_potential_wien2k() (in mod-
ule spinney.io.wien2k), 92

C
calculate_defect_formation_energy() (in

module spinney.tools.reactions), 89
calculate_energies() (spin-

ney.structures.defectivesystem.DefectiveSystem
method), 67

calculate_finite_size_correction() (spin-
ney.structures.pointdefect.PointDefect method),
64

calculate_formation_energy_fu() (in mod-
ule spinney.tools.reactions), 90

calculate_reaction_energy() (in module spin-
ney.tools.reactions), 90

Carrier (class in spinney.defects.concentration), 83
cbm (spinney.defects.concentration.EquilibriumConcentrations

attribute), 86
charge_states (spin-

ney.defects.concentration.EquilibriumConcentrations
attribute), 86

check_value_variables() (spin-
ney.thermodynamics.chempots.Range method),
70

chemical_potentials (spin-
ney.structures.defectivesystem.DefectiveSystem
attribute), 66

ChlorineChemPot (class in spin-
ney.thermodynamics.chempots), 67

ConductionElectron (class in spin-
ney.defects.concentration), 84

correction_scheme (spin-
ney.structures.defectivesystem.DefectiveSystem
attribute), 66

count_elements() (in module spin-
ney.tools.formulas), 88

D
data (spinney.structures.defectivesystem.DefectiveSystem

attribute), 66
defect_charge (spin-

ney.structures.pointdefect.PointDefect at-
tribute), 62

defect_order (spin-
ney.defects.concentration.EquilibriumConcentrations
attribute), 86

defect_position (spin-
ney.structures.pointdefect.PointDefect at-
tribute), 62

DefectConcentration (class in spin-
ney.defects.concentration), 84

DefectiveSystem (class in spin-
ney.structures.defectivesystem), 66

defects (spinney.defects.diagrams.Diagram attribute),
81

defects_degeneracy_numbers() (spin-
ney.structures.defectivesystem.DefectiveSystem
property), 67

Diagram (class in spinney.defects.diagrams), 80
diagram (spinney.structures.defectivesystem.DefectiveSystem

attribute), 67
dielectric_tensor (spin-

ney.structures.defectivesystem.DefectiveSystem
attribute), 66

difference_potential_vs_distance (spin-
ney.defects.kumagai.KumagaiCorr attribute),
75

difference_potential_vs_distance() (spin-
ney.defects.kumagai.KumagaiCorr property),

103

Spinney, Release ’0.9.a2’

76
difference_potential_vs_distance_sampling_region

(spinney.defects.kumagai.KumagaiCorr at-
tribute), 76

dilute_limit_approx_concentration (spin-
ney.defects.concentration.DefectConcentration
attribute), 84

dilute_limit_concentration (spin-
ney.defects.concentration.DefectConcentration
attribute), 84

Direct() (spinney.defects.fnv.FChargeDistribution
method), 78

DummyAseCalculator (class in spin-
ney.structures.pointdefect), 62

E
equilibrium_carrier_concentrations (spin-

ney.defects.concentration.EquilibriumConcentrations
attribute), 87

equilibrium_defect_concentrations (spin-
ney.defects.concentration.EquilibriumConcentrations
attribute), 86

equilibrium_electron_concentrations
(spinney.defects.concentration.EquilibriumConcentrations
attribute), 87

equilibrium_fermi_level (spin-
ney.defects.concentration.EquilibriumConcentrations
attribute), 86

equilibrium_hole_concentrations (spin-
ney.defects.concentration.EquilibriumConcentrations
attribute), 87

EquilibriumConcentrations (class in spin-
ney.defects.concentration), 84

ewald_potential_vs_distance_sampling_region
(spinney.defects.kumagai.KumagaiCorr at-
tribute), 76

extended_gap_range (spin-
ney.structures.defectivesystem.DefectiveSystem
attribute), 67

extract_dos() (in module spinney.io.vasp), 92
extract_formation_energies_from_file()

(in module spinney.defects.concentration), 88
extract_formation_energies_from_file()

(in module spinney.defects.diagrams), 83
extract_potential_at_core_vasp() (in mod-

ule spinney.io.vasp), 92
extract_potential_at_core_wien2k() (in

module spinney.io.wien2k), 92

F
FChargeDistribution (class in spin-

ney.defects.fnv), 77
FCorrection (class in spinney.defects.fnv), 78

FermiDiracDistribution (class in spin-
ney.defects.concentration), 87

FFitChargeDensity (class in spinney.defects.fnv),
79

find_partial_pressure_given_mu() (in mod-
ule spinney.thermodynamics.chempots), 72

find_root_algo (spin-
ney.defects.concentration.EquilibriumConcentrations
attribute), 87

fit_model() (spinney.defects.fnv.FFitChargeDensity
method), 79

FluorineChemPot (class in spin-
ney.thermodynamics.chempots), 67

formation_energies_equilibrium (spin-
ney.defects.concentration.EquilibriumConcentrations
attribute), 86

formation_energies_vbm (spin-
ney.defects.concentration.EquilibriumConcentrations
attribute), 86

Fourier_transform() (spin-
ney.defects.fnv.FChargeDistribution method),
78

Fourier_transform_gto0() (spin-
ney.defects.fnv.FChargeDistribution method),
78

FPlotterPot (class in spinney.defects.fnv), 79

G
G_diff_Shomate_Eq() (spin-

ney.thermodynamics.chempots.IdealGasChemPot
method), 68

gap_range (spinney.structures.defectivesystem.DefectiveSystem
attribute), 67

generate_reciprocal_space_grid() (spin-
ney.defects.fnv.FCorrection method), 79

get_chem_pots_conditions() (in module spin-
ney.thermodynamics.chempots), 72

get_compound_energy_per_atom() (in module
spinney.tools.reactions), 91

get_compound_energy_per_formula_unit()
(in module spinney.tools.reactions), 91

get_conditions_from_file() (in module spin-
ney.thermodynamics.chempots), 73

get_conduction_electron_number() (spin-
ney.defects.concentration.ConductionElectron
method), 84

get_correction_energy() (spin-
ney.defects.fnv.FCorrection method), 79

get_defect_formation_energy() (spin-
ney.structures.pointdefect.PointDefect method),
64

get_E_lat() (spinney.defects.fnv.FCorrection
method), 79

get_equilibrium_defect_concentrations()

104 Index

Spinney, Release ’0.9.a2’

(spinney.defects.concentration.EquilibriumConcentrations
method), 87

get_equilibrium_electron_concentrations()
(spinney.defects.concentration.EquilibriumConcentrations
method), 87

get_equilibrium_fermi_level() (spin-
ney.defects.concentration.EquilibriumConcentrations
method), 87

get_formula_unit() (in module spin-
ney.tools.formulas), 89

get_ideal_gas_chemical_potential_Shomate()
(spinney.thermodynamics.chempots.IdealGasChemPot
method), 68

get_model_D() (spin-
ney.defects.fnv.FChargeDistribution class
method), 78

get_number_fu() (in module spin-
ney.tools.formulas), 89

get_potential_alignment() (spin-
ney.defects.fnv.FCorrection method), 79

get_stoichiometry() (in module spin-
ney.tools.formulas), 89

get_valence_holes_number() (spin-
ney.defects.concentration.ValenceHole
method), 88

grouped_atom_by_distance (spin-
ney.defects.kumagai.KumagaiCorr attribute),
76

H
HydrogenChemPot (class in spin-

ney.thermodynamics.chempots), 68

I
ideal_gas_chemical_potential() (in module

spinney.thermodynamics.chempots), 73
IdealGasChemPot (class in spin-

ney.thermodynamics.chempots), 68
intersections (spin-

ney.defects.diagrams.PointDefectLines at-
tribute), 82

intersections() (spin-
ney.defects.diagrams.PointDefectLines prop-
erty), 82

K
kb (spinney.defects.concentration.FermiDiracDistribution

attribute), 88
kumagai_sampling_region() (in module spin-

ney.defects.kumagai), 76
KumagaiCorr (class in spinney.defects.kumagai), 75

L
labels (spinney.defects.diagrams.Diagram attribute),

81
Line (class in spinney.defects.diagrams), 81
lines (spinney.defects.diagrams.PointDefectLines at-

tribute), 82
lines_limits (spin-

ney.defects.diagrams.PointDefectLines at-
tribute), 82

lines_limits() (spin-
ney.defects.diagrams.PointDefectLines prop-
erty), 82

M
map_atoms_pristine_defect() (in module spin-

ney.defects.kumagai), 76
module

spinney, 61
spinney.defects.concentration, 83
spinney.defects.diagrams, 80
spinney.defects.fnv, 77
spinney.defects.kumagai, 75
spinney.io.vasp, 92
spinney.io.wien2k, 92
spinney.structures.defectivesystem,

66
spinney.structures.pointdefect, 62
spinney.thermodynamics.chempots, 67
spinney.tools.formulas, 88
spinney.tools.reactions, 89

mu (spinney.defects.concentration.Carrier attribute), 83
mu (spinney.defects.concentration.FermiDiracDistribution

attribute), 88
mu_labels (spinney.thermodynamics.chempots.Range

attribute), 70
my_name (spinney.structures.pointdefect.PointDefect at-

tribute), 62

N
N_eff (spinney.defects.concentration.EquilibriumConcentrations

attribute), 86
NitrogenChemPot (class in spin-

ney.thermodynamics.chempots), 69
number_of_variables (spin-

ney.thermodynamics.chempots.Range at-
tribute), 69

O
OxygenChemPot (class in spin-

ney.thermodynamics.chempots), 69

P
parent_compounds (spin-

ney.structures.pointdefect.PointDefect at-
tribute), 62

Index 105

Spinney, Release ’0.9.a2’

parent_elements (spin-
ney.structures.pointdefect.PointDefect at-
tribute), 63

parse_mu_from_string() (in module spin-
ney.thermodynamics.chempots), 74

plane_average_potential() (in module spin-
ney.defects.fnv), 80

plot() (spinney.defects.diagrams.Diagram method), 81
plot() (spinney.defects.fnv.FPlotterPot method), 80
plot_feasible_region_on_plane() (spin-

ney.thermodynamics.chempots.Range method),
71

plot_lines() (spin-
ney.defects.diagrams.PointDefectLines
method), 82

point_defects (spin-
ney.structures.defectivesystem.DefectiveSystem
attribute), 67

PointDefect (class in spinney.structures.pointdefect),
62

PointDefectLines (class in spin-
ney.defects.diagrams), 81

prepare_ase_atoms_wien2k() (in module spin-
ney.io.wien2k), 92

pristine_system (spin-
ney.structures.pointdefect.PointDefect at-
tribute), 62

R
Range (class in spinney.thermodynamics.chempots), 69
read_energy_wien2k() (in module spin-

ney.io.wien2k), 93
read_wien2k_radial_data() (in module spin-

ney.io.wien2k), 93
read_wien2k_vcoul() (in module spin-

ney.io.wien2k), 93

S
set_chemical_potential_labels() (spin-

ney.thermodynamics.chempots.Range method),
71

set_chemical_potential_ranges() (spin-
ney.structures.pointdefect.PointDefect method),
64

set_chemical_potential_values() (spin-
ney.structures.pointdefect.PointDefect method),
64

set_color_map() (spin-
ney.thermodynamics.chempots.Range method),
71

set_compound_dict() (spin-
ney.thermodynamics.chempots.Range method),
72

set_defect_charge() (spin-
ney.structures.pointdefect.PointDefect method),
65

set_defect_position() (spin-
ney.structures.pointdefect.PointDefect method),
65

set_dielectric_tensor() (spin-
ney.structures.pointdefect.PointDefect method),
65

set_Eg() (spinney.structures.pointdefect.PointDefect
method), 64

set_fermi_level_value_from_vbm() (spin-
ney.structures.pointdefect.PointDefect method),
65

set_finite_size_correction_scheme()
(spinney.structures.pointdefect.PointDefect
method), 65

set_latex_globally() (in module spin-
ney.defects.diagrams), 83

set_parent_elements() (spin-
ney.structures.pointdefect.PointDefect method),
65

set_pristine_system() (spin-
ney.structures.pointdefect.PointDefect method),
65

set_vbm() (spinney.structures.pointdefect.PointDefect
method), 65

site_conc (spinney.defects.concentration.EquilibriumConcentrations
attribute), 86

spinney
module, 61

spinney.defects.concentration
module, 83

spinney.defects.diagrams
module, 80

spinney.defects.fnv
module, 77

spinney.defects.kumagai
module, 75

spinney.io.vasp
module, 92

spinney.io.wien2k
module, 92

spinney.structures.defectivesystem
module, 66

spinney.structures.pointdefect
module, 62

spinney.thermodynamics.chempots
module, 67

spinney.tools.formulas
module, 88

spinney.tools.reactions
module, 89

106 Index

Spinney, Release ’0.9.a2’

T
T (spinney.defects.concentration.Carrier attribute), 84
T (spinney.defects.concentration.EquilibriumConcentrations

attribute), 86
transition_levels (spin-

ney.defects.diagrams.PointDefectLines at-
tribute), 82

transition_levels() (spin-
ney.defects.diagrams.PointDefectLines prop-
erty), 83

V
ValenceHole (class in spinney.defects.concentration),

88
values (spinney.defects.concentration.FermiDiracDistribution

attribute), 88
variables_extrema (spin-

ney.thermodynamics.chempots.Range at-
tribute), 70

variables_extrema_2d (spin-
ney.thermodynamics.chempots.Range at-
tribute), 70

vbm (spinney.defects.concentration.EquilibriumConcentrations
attribute), 86

vbm (spinney.structures.defectivesystem.DefectiveSystem
attribute), 66

W
write_formation_energies() (spin-

ney.structures.defectivesystem.DefectiveSystem
method), 67

write_transition_levels() (spin-
ney.defects.diagrams.Diagram method),
81

Index 107

	The Spinney package
	Installation
	Setup
	Requirements

	Case Study: Mg-doped GaN
	Step 1. Defining the values of chemical potentials
	Step 2. Set up the directory with the data about the defective system
	Step 3. Calculate defect formation energies
	Step 4. Calculate charge transition levels
	Step 4. Calculate defect concentrations

	Tutorial
	The defect formation energy in the supercell approach
	Correction schemes for electrostatic finite-size effects
	Thermodynamic limits for the chemical potentials
	Charge Transition Levels
	Equilibrium defect concentrations in the dilute limit

	Release Notes
	Version 0.9.a1
	Version 0.9.a1
	Version 0.9.a0
	Version 0.8.a3
	Version 0.8.a2
	Version 0.8.a1
	Version 0.8.a0
	Version 0.7.a5

	API reference
	General high-level interface for point-defect calculations
	Determination of the possible values of equilibrium chemical potentials
	Correction schemes for electrostatic finite-size effects in supercells
	Calculation of equilibrium defect properties
	General-purpose tools
	Support for first-principles codes

	Bibliography
	Contact
	E-mail
	Gitlab

	Bibliography
	Python Module Index
	Index

